2025年绿色通道45分钟课时作业与单元测评高中数学选择性必修第二册人教版
注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2025年绿色通道45分钟课时作业与单元测评高中数学选择性必修第二册人教版 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。
1. 若数列$\{ a_{n}\}$的前$n$项和为$S_{n}$,且$a_{n + 1} + a_{n} = 2^{n}$,则$S_{10} =$(
A.$684$
B.$682$
C.$342$
D.$341$
B
)A.$684$
B.$682$
C.$342$
D.$341$
答案:
1.B $a_{2}+a_{1}=2^{1},a_{4}+a_{3}=2^{3},a_{6}+a_{5}=2^{5},a_{8}+a_{7}=2^{7}$, $a_{10}+a_{9}=2^{9}$,所以$S_{10}=2^{1}+2^{3}+2^{5}+2^{7}+2^{9}=$ $\frac{2×(1-4^{5})}{1-4}=682$.
2. 数列$\{ a_{n}\}$满足$a_{1} = 1$,$a_{n + 2} + a_{n}\cos n\pi = \left( \left\lvert \sin \dfrac {n\pi }{2}\right\rvert - 1\right)n$,则数列$\{ a_{n}\}$的前$60$项和为(
A.$-195$
B.$-420$
C.$-450$
D.$-870$
B
)A.$-195$
B.$-420$
C.$-450$
D.$-870$
答案:
2.B 由$a_{n+2}+a_{n}\cos n\pi=(\sin\frac{n\pi}{2}-1)n$,得$a_{2n+1}=0,a_{2n+2}+a_{2n}=-2n$,而$a_{1}=1$,因此数列$\{a_{2n-1}\}$的所有项均为1,有$a_{1}+a_{3}+·s+a_{59}=30$,$(a_{2}+a_{4})+$ $(a_{6}+a_{8})+·s+(a_{58}+a_{60})=-2-6-·s-58=-450$,所以数列$\{a_{n}\}$的前60项和为$30-450=-420$,故选B.
3. 对于公差为$1$的等差数列$\{ a_{n}\}$,$a_{2} = 2$;公比为$2$的等比数列$\{ b_{n}\}$,$b_{2} = 4$,下列说法不正确的是(
A.$a_{n} = n$
B.$b_{n} = 2^{n - 1}$
C.数列$\{ \ln b_{n}\}$为等差数列
D.数列$\{ a_{n}b_{n}\}$的前$n$项和为$(n - 1)2^{n + 1} + 2$
B
)A.$a_{n} = n$
B.$b_{n} = 2^{n - 1}$
C.数列$\{ \ln b_{n}\}$为等差数列
D.数列$\{ a_{n}b_{n}\}$的前$n$项和为$(n - 1)2^{n + 1} + 2$
答案:
3.B 对于A:由条件可得$a_{1}=2-1=1$,则$a_{n}=1+(n-1)=n$,即选项A正确;对于B:由条件可得$b_{1}=2$, $b_{n}=2×2^{n-1}=2^{n}$,即选项B错误;对于C:因为$b_{n}=2^{n}$,所以$\ln b_{n}=\ln2^{n}=n\ln2$,则$\ln b_{n+1}-\ln b_{n}=(n+1)\ln2-$ $n\ln2=\ln2$,即数列$\{\ln b_{n}\}$是首项和公差均为$\ln2$的等差数列,即选项C正确;对于D:$a_{n}b_{n}=n·2^{n}$,设数列$\{a_{n}b_{n}\}$的前$n$项和为$S_{n}$,则$S_{n}=1×2+2×2^{2}+·s+n×2^{n}$,$2S_{n}=1×2^{2}+2×2^{3}+·s+n×2^{n+1}$,上面两式相减可得$-S_{n}=2+2^{2}+·s+2^{n}-n×2^{n+1}=\frac{2(1-2^{n})}{1-2}-n×$ $2^{n+1}$,所以$S_{n}=2+(n-1)×2^{n+1}$,即选项D正确.
4. 已知数列$\{ a_{n}\}$是等差数列,$a_{1} = \tan 225^{\circ}$,$a_{5} = 13a_{1}$,设$S_{n}$为数列$\{ (-1)^{n}a_{n}\}$的前$n$项和,则$S_{2\,024} =$(
A.$2\,024$
B.$-2\,024$
C.$3\,036$
D.$-3\,036$
C
)A.$2\,024$
B.$-2\,024$
C.$3\,036$
D.$-3\,036$
答案:
4.C 由$a_{1}=\tan225^{\circ}=\tan(180^{\circ}+45^{\circ})=\tan45^{\circ}=1$,得$a_{5}=13a_{1}=13$,设数列$\{a_{n}\}$的公差为$d$,则$d=\frac{a_{5}-a_{1}}{5-1}=$ $\frac{13-1}{5-1}=3$,所以$S_{2024}=(a_{2}-a_{1})+(a_{4}-a_{3})+(a_{6}-$ $a_{5})+·s+(a_{2024}-a_{2023})=1012d=3036$.
5. (多选)(2025·江苏南通期末)$S_{n}$为数列$\{ a_{n}\}$的前$n$项和,已知对任意的$n \in \mathbf{N}^{*}$,$a_{n} + a_{n + 1} = 2n + 1$,则下列说法中正确的是(
A.$S_{2} = 3$
B.$a_{1} = 1$
C.$S_{8} = 36$
D.$a_{n} = n$
AC
)A.$S_{2} = 3$
B.$a_{1} = 1$
C.$S_{8} = 36$
D.$a_{n} = n$
答案:
5.AC 数列$\{a_{n}\}$中,对任意的$n\in N^{*}$,$a_{n}+a_{n+1}=2n+1$,则$S_{2}=a_{1}+a_{2}=2×1+1=3$,$S_{8}=(a_{1}+a_{2})+(a_{3}+$ $a_{4})+(a_{5}+a_{6})+(a_{7}+a_{8})=3+7+11+15=36$,A、C正确;由$a_{1}+a_{2}=3$,知$a_{1}$的值无法确定,则$a_{n}$也无法确定,B、D错误.
6. (多选)“提丢斯数列”是$18$世纪由德国数学家提丢斯给出的,具体如下:取$0$,$3$,$6$,$12$,$24$,$48$,$96$,$192$,$·s$这样一组数,容易发现,这组数从第$3$项开始,每一项是前一项的$2$倍,将这组数的每一项加上$4$,再除以$10$,就得到“提丢斯数列”:$0.4$,$0.7$,$1.0$,$1.6$,$2.8$,$5.2$,$10.0$,$19.6$,$·s$,则下列说法中正确的是(
A.“提丢斯数列”是等比数列
B.“提丢斯数列”的第$99$项为$\dfrac {3× 2^{97} + 4}{10}$
C.“提丢斯数列”的前$31$项和为$\dfrac {3× 2^{30} + 121}{10}$
D.“提丢斯数列”中,不超过$20$的有$9$项
BC
)A.“提丢斯数列”是等比数列
B.“提丢斯数列”的第$99$项为$\dfrac {3× 2^{97} + 4}{10}$
C.“提丢斯数列”的前$31$项和为$\dfrac {3× 2^{30} + 121}{10}$
D.“提丢斯数列”中,不超过$20$的有$9$项
答案:
6.BC 记“提丢斯数列”为数列$\{a_{n}\}$,则当$n\geqslant3$时,$a_{n}=\frac{6·2^{n-3}+4-3·2^{n-2}+4}{10}$,当$n=2$时,$a_{2}=0.7$符合上式,当$n=1$时,$a_{1}=0.4$不符合上式,故$a_{n}=\begin{cases}0.4,n=1,\frac{3·2^{n-2}+4}{10},n\geqslant2,\end{cases}$故A错误;$a_{99}=\frac{3×2^{97}+4}{10}$,故B正确;“提丢斯数列”的前31项和为$\frac{2}{5}+\frac{3}{10}×(2^{0}+·s+$ $2^{29})+\frac{2}{5}×30=\frac{3×2^{30}}{10}+\frac{121}{10}$,故C正确;令$\frac{3·2^{n-2}+4}{10}\leqslant$ $20$,即$2^{n-2}\leqslant\frac{196}{3}$,得$n=2,3,4,5,6,7,8$,又$a_{1}<20$,故不超过20的有8项,故D错误.
7. 已知数列$\{ a_{n}\}$,$\{ b_{n}\}$满足$a_{n} + b_{n} = \dfrac {1}{n}$,$b_{n} - a_{n + 1} = \dfrac {1}{n + 2}$,则$a_{1} + a_{2} + a_{3} + ·s + a_{100} =$
$\frac{100}{101}$
.
答案:
7.$\frac{100}{101}$
解析 由$a_{n}+b_{n}=\frac{1}{n}$,$b_{n}-a_{n+1}=\frac{1}{n+2}$,可得$a_{n+1}+a_{n}=$ $\frac{1}{n}-\frac{1}{n+2}$,则$a_{1}+a_{2}+a_{3}+·s+a_{100}=(1-\frac{1}{3})+(\frac{1}{3}-$ $\frac{1}{5})+(\frac{1}{5}-\frac{1}{7})+·s+(\frac{1}{99}-\frac{1}{101})=\frac{100}{101}$.
解析 由$a_{n}+b_{n}=\frac{1}{n}$,$b_{n}-a_{n+1}=\frac{1}{n+2}$,可得$a_{n+1}+a_{n}=$ $\frac{1}{n}-\frac{1}{n+2}$,则$a_{1}+a_{2}+a_{3}+·s+a_{100}=(1-\frac{1}{3})+(\frac{1}{3}-$ $\frac{1}{5})+(\frac{1}{5}-\frac{1}{7})+·s+(\frac{1}{99}-\frac{1}{101})=\frac{100}{101}$.
8. (2024·江西赣州期中)数列$\{ a_{n}\}$的前$n$项和为$S_{n}$,若$a_{n} = \dfrac {1}{n(n + 1)} + \sin \dfrac {n\pi }{2}$,则$S_{2\,024} =$
$\frac{2024}{2025}$
.
答案:
8.$\frac{2024}{2025}$
解析 由$a_{n}=\frac{1}{n(n+1)}+\sin\frac{n\pi}{2}·\frac{1}{n}-\frac{1}{n+1}+\sin\frac{n\pi}{2}$,得$S_{2024}=(\frac{1}{1}-\frac{1}{2}+1)+(\frac{1}{2}-\frac{1}{3}+0)+(\frac{1}{3}-\frac{1}{4}-1)+$ $·s+(\frac{1}{2024}-\frac{1}{2025}+0)=(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+·s+\frac{1}{2024}-\frac{1}{2025})+(1+$ $0-1+0+·s+0)=1-\frac{1}{2025}-\frac{2024}{2025}$.
解析 由$a_{n}=\frac{1}{n(n+1)}+\sin\frac{n\pi}{2}·\frac{1}{n}-\frac{1}{n+1}+\sin\frac{n\pi}{2}$,得$S_{2024}=(\frac{1}{1}-\frac{1}{2}+1)+(\frac{1}{2}-\frac{1}{3}+0)+(\frac{1}{3}-\frac{1}{4}-1)+$ $·s+(\frac{1}{2024}-\frac{1}{2025}+0)=(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+·s+\frac{1}{2024}-\frac{1}{2025})+(1+$ $0-1+0+·s+0)=1-\frac{1}{2025}-\frac{2024}{2025}$.
9. (2024·湖北武汉期中)在数列$\{ a_{n}\}$中,$a_{1} = 2$,$a_{n + 1} - a_{n} = 2^{n}(n \in \mathbf{N}^{*})$.
(1) 求数列$\{ a_{n}\}$的通项公式;
(2) 若$b_{n} = na_{n} + 1$,求数列$\{ b_{n}\}$的前$n$项和$S_{n}$.
(1) 求数列$\{ a_{n}\}$的通项公式;
(2) 若$b_{n} = na_{n} + 1$,求数列$\{ b_{n}\}$的前$n$项和$S_{n}$.
答案:
9.解
(1)因为数列$\{a_{n}\}$满足$a_{1}=2$,且$a_{n+1}-a_{n}=2^{n}$,所以当$n\geqslant2$时,可得$a_{n}=a_{1}+(a_{2}-a_{1})+(a_{3}-$ $a_{2})+·s+(a_{n}-a_{n-1})=2+(2+2^{2}+·s+2^{n-1})=2+$ $2(1-2^{n-1})\frac{ }{1-2}=2^{n}$,当$n=1$时,$a_{1}=2$也适合上式,所以数列$\{a_{n}\}$的通项公式为$a_{n}=2^{n}$,$n\in N^{*}$.
(2)由于$b_{n}=na_{n}+1$,且$a_{n}=2^{n}$,$n\in N^{*}$,则$S_{n}=b_{1}+b_{2}+·s+b_{n}=1×2^{1}+2×2^{2}+·s+n×$ $2^{n}+n$,设$T_{n}=1×2^{1}+2×2^{2}+·s+n×2^{n+1}$,则$2T_{n}=1×2^{2}+2×2^{3}+·s+n×2^{n+1}$,两式相减得$-T_{n}=2^{1}+2^{2}+2^{3}+·s+2^{n}-n×2^{n+1}=\frac{2(1-2^{n})}{1-2}-n×2^{n+1}=(1-n)×2^{n+1}-2$,所以$T_{n}=(n-1)×2^{n+1}+2$,所以$S_{n}=(n-1)×2^{n+1}+2+n$,$n\in N^{*}$.
(1)因为数列$\{a_{n}\}$满足$a_{1}=2$,且$a_{n+1}-a_{n}=2^{n}$,所以当$n\geqslant2$时,可得$a_{n}=a_{1}+(a_{2}-a_{1})+(a_{3}-$ $a_{2})+·s+(a_{n}-a_{n-1})=2+(2+2^{2}+·s+2^{n-1})=2+$ $2(1-2^{n-1})\frac{ }{1-2}=2^{n}$,当$n=1$时,$a_{1}=2$也适合上式,所以数列$\{a_{n}\}$的通项公式为$a_{n}=2^{n}$,$n\in N^{*}$.
(2)由于$b_{n}=na_{n}+1$,且$a_{n}=2^{n}$,$n\in N^{*}$,则$S_{n}=b_{1}+b_{2}+·s+b_{n}=1×2^{1}+2×2^{2}+·s+n×$ $2^{n}+n$,设$T_{n}=1×2^{1}+2×2^{2}+·s+n×2^{n+1}$,则$2T_{n}=1×2^{2}+2×2^{3}+·s+n×2^{n+1}$,两式相减得$-T_{n}=2^{1}+2^{2}+2^{3}+·s+2^{n}-n×2^{n+1}=\frac{2(1-2^{n})}{1-2}-n×2^{n+1}=(1-n)×2^{n+1}-2$,所以$T_{n}=(n-1)×2^{n+1}+2$,所以$S_{n}=(n-1)×2^{n+1}+2+n$,$n\in N^{*}$.
查看更多完整答案,请扫码查看