7. 计算$(-\frac {b^{2}}{2a})^{2}\cdot \frac {6}{b^{4}}$的结果是
$\frac{3}{2a^{2}}$
.
答案:
$\frac{3}{2a^{2}}$
8. 先化简,再求值:$\frac {a-1}{a-2}\cdot \frac {a^{2}-4}{a^{2}-2a+1}-\frac {2}{a-1}$,其中$a= \frac {1}{2}$.
答案:
解 原式 $=\frac{a - 1}{a - 2} \cdot \frac{(a - 2)(a + 2)}{(a - 1)^{2}} - \frac{2}{a - 1} = \frac{a + 2}{a - 1} - \frac{2}{a - 1} = \frac{a + 2 - 2}{a - 1} = \frac{a}{a - 1}$,当 $a = \frac{1}{2}$ 时,原式 $=\frac{\frac{1}{2}}{\frac{1}{2} - 1} = -1$。
9. 计算$\frac {81-a^{2}}{a^{2}+6a+9}÷\frac {a-9}{2a+6}\cdot \frac {a+3}{a+9}$的结果为(
A. $\frac {1}{2}$
B. 1
C. -1
D. -2
D
)A. $\frac {1}{2}$
B. 1
C. -1
D. -2
答案:
D
10. 把式子$\frac {x-1}{x-3}÷\frac {x^{2}-1}{x^{2}-6x+9}$化到最简,其结果为
$\frac{x - 3}{x + 1}$
.
答案:
$\frac{x - 3}{x + 1}$
11. 计算:(1)$\frac {x^{2}+1}{x-6}\cdot \frac {x^{2}-36}{x^{3}+x}$;
(2)$\frac {15x^{5}}{(-2y)^{3}}÷(\frac {-3x}{8y})^{2}$;
(3)$\frac {x^{2}-4}{x+2}÷(x-2)\cdot \frac {1}{x-2}$;
(4)$\frac {1}{a-2}-\frac {2}{a^{2}-2a}$.
(2)$\frac {15x^{5}}{(-2y)^{3}}÷(\frac {-3x}{8y})^{2}$;
(3)$\frac {x^{2}-4}{x+2}÷(x-2)\cdot \frac {1}{x-2}$;
(4)$\frac {1}{a-2}-\frac {2}{a^{2}-2a}$.
答案:
解 (1)原式 $=\frac{x^{2} + 1}{x - 6} \cdot \frac{(x + 6)(x - 6)}{x(x^{2} + 1)} = \frac{x + 6}{x}$。(2)原式 $=\frac{15x^{5}}{-8y^{3}} \cdot \frac{64y^{2}}{9x^{2}} = -\frac{40x^{3}}{3y}$。(3)原式 $=\frac{(x + 2)(x - 2)}{x + 2} \cdot \frac{1}{x - 2} \cdot \frac{1}{x - 2} = \frac{1}{x - 2}$。(4)原式 $=\frac{a}{a(a - 2)} - \frac{2}{a(a - 2)} = \frac{a - 2}{a(a - 2)} = \frac{1}{a}$。
查看更多完整答案,请扫码查看