10. 如图,直线$AE// BD$,四边形$ABCE$为平行四边形,点$C在BD$上,若$AE = 5$,$BD = 8$,$\triangle ABD$的面积为 16,则$\triangle ABC$的面积为______

10
.
答案:
10
11. 如图,在$□ ABCD$中,$AD = 2AB$,点$E为AD$的中点,$CE的延长线交BA的延长线于点F$.
(1)求证:$FB = AD$;
(2)若$\angle DAF = 70^{\circ}$,求$\angle EBC$的度数.

(1) 证明 $\because E$ 为 $AD$ 的中点,
$\therefore DE = AE$。
$\because$ 四边形 $ABCD$ 是平行四边形,
$\therefore AB// CD$,$AB = DC$,$AD = BC$,
$\therefore\angle EDC = \angle EAF$。
在 $\triangle DEC$ 和 $\triangle AEF$ 中,
$\begin{cases}\angle DEC = \angle AEF, \\DE = AE, \\\angle EDC = \angle EAF,\end{cases}$
$\therefore\triangle DEC\cong\triangle AEF$,$\therefore DC = AF$。
$\because AD = 2AB$,$\therefore AB = DE = EA = AF$,
$\therefore AF + AB = 2AB$,即 $FB = AD$。
(2) 解 $\because$ 四边形 $ABCD$ 是平行四边形,
$\therefore DA// CB$,$\therefore\angle CBF = \angle DAF = 70^{\circ}$,$\angle AEB = \angle EBC$,又由 (1) 知 $AE = AB$,
$\therefore\angle AEB = \angle ABE=\frac{1}{2}\angle DAF$,
$\therefore\angle EBC = \angle ABE =
(1)求证:$FB = AD$;
(2)若$\angle DAF = 70^{\circ}$,求$\angle EBC$的度数.
(1) 证明 $\because E$ 为 $AD$ 的中点,
$\therefore DE = AE$。
$\because$ 四边形 $ABCD$ 是平行四边形,
$\therefore AB// CD$,$AB = DC$,$AD = BC$,
$\therefore\angle EDC = \angle EAF$。
在 $\triangle DEC$ 和 $\triangle AEF$ 中,
$\begin{cases}\angle DEC = \angle AEF, \\DE = AE, \\\angle EDC = \angle EAF,\end{cases}$
$\therefore\triangle DEC\cong\triangle AEF$,$\therefore DC = AF$。
$\because AD = 2AB$,$\therefore AB = DE = EA = AF$,
$\therefore AF + AB = 2AB$,即 $FB = AD$。
(2) 解 $\because$ 四边形 $ABCD$ 是平行四边形,
$\therefore DA// CB$,$\therefore\angle CBF = \angle DAF = 70^{\circ}$,$\angle AEB = \angle EBC$,又由 (1) 知 $AE = AB$,
$\therefore\angle AEB = \angle ABE=\frac{1}{2}\angle DAF$,
$\therefore\angle EBC = \angle ABE =
35°
$。
答案:
(1) 证明 $\because E$ 为 $AD$ 的中点,
$\therefore DE = AE$。
$\because$ 四边形 $ABCD$ 是平行四边形,
$\therefore AB// CD$,$AB = DC$,$AD = BC$,
$\therefore\angle EDC = \angle EAF$。
在 $\triangle DEC$ 和 $\triangle AEF$ 中,
$\begin{cases}\angle DEC = \angle AEF, \\DE = AE, \\\angle EDC = \angle EAF,\end{cases}$
$\therefore\triangle DEC\cong\triangle AEF$,$\therefore DC = AF$。
$\because AD = 2AB$,$\therefore AB = DE = EA = AF$,
$\therefore AF + AB = 2AB$,即 $FB = AD$。
(2) 解 $\because$ 四边形 $ABCD$ 是平行四边形,
$\therefore DA// CB$,$\therefore\angle CBF = \angle DAF = 70^{\circ}$,$\angle AEB = \angle EBC$,又由
(1) 知 $AE = AB$,
$\therefore\angle AEB = \angle ABE=\frac{1}{2}\angle DAF$,
$\therefore\angle EBC = \angle ABE = 35^{\circ}$。
(1) 证明 $\because E$ 为 $AD$ 的中点,
$\therefore DE = AE$。
$\because$ 四边形 $ABCD$ 是平行四边形,
$\therefore AB// CD$,$AB = DC$,$AD = BC$,
$\therefore\angle EDC = \angle EAF$。
在 $\triangle DEC$ 和 $\triangle AEF$ 中,
$\begin{cases}\angle DEC = \angle AEF, \\DE = AE, \\\angle EDC = \angle EAF,\end{cases}$
$\therefore\triangle DEC\cong\triangle AEF$,$\therefore DC = AF$。
$\because AD = 2AB$,$\therefore AB = DE = EA = AF$,
$\therefore AF + AB = 2AB$,即 $FB = AD$。
(2) 解 $\because$ 四边形 $ABCD$ 是平行四边形,
$\therefore DA// CB$,$\therefore\angle CBF = \angle DAF = 70^{\circ}$,$\angle AEB = \angle EBC$,又由
(1) 知 $AE = AB$,
$\therefore\angle AEB = \angle ABE=\frac{1}{2}\angle DAF$,
$\therefore\angle EBC = \angle ABE = 35^{\circ}$。
12. 如图,在$□ ABCD$中,$AE平分\angle BAD交BC于点E$,过点$E作AE的垂线交CD于点F$. 若$CF = 1$,$AD = 5$,求$AB$的长.

解 $\because$ 四边形 $ABCD$ 是平行四边形,
$\therefore AD// BC$,$\angle BAD = \angle C$,$AD = BC = 5$,$\therefore\angle DAE = \angle AEB$,
又 $\because AE$ 平分 $\angle BAD$,
$\therefore\angle BAE = \angle DAE$,
$\therefore\angle AEB = \angle BAE$,$\therefore BE = AB$。
设 $\angle BAE = x$,则 $\angle C = \angle BAD = 2x$,$\angle B = 180^{\circ} - 2x$。
$\because AE\perp EF$,$\therefore\angle AEF = 90^{\circ}$,
$\therefore\angle FEC = 90^{\circ} - x$,
$\because\angle EFC = 180^{\circ} - (\angle C + \angle CEF) = 180^{\circ} - (2x + 90^{\circ} - x) = 90^{\circ} - x$,
$\therefore\angle FEC = \angle EFC$,$\therefore CF = CE = 1$,
$\therefore BE = 4$,$\therefore AB =$
解 $\because$ 四边形 $ABCD$ 是平行四边形,
$\therefore AD// BC$,$\angle BAD = \angle C$,$AD = BC = 5$,$\therefore\angle DAE = \angle AEB$,
又 $\because AE$ 平分 $\angle BAD$,
$\therefore\angle BAE = \angle DAE$,
$\therefore\angle AEB = \angle BAE$,$\therefore BE = AB$。
设 $\angle BAE = x$,则 $\angle C = \angle BAD = 2x$,$\angle B = 180^{\circ} - 2x$。
$\because AE\perp EF$,$\therefore\angle AEF = 90^{\circ}$,
$\therefore\angle FEC = 90^{\circ} - x$,
$\because\angle EFC = 180^{\circ} - (\angle C + \angle CEF) = 180^{\circ} - (2x + 90^{\circ} - x) = 90^{\circ} - x$,
$\therefore\angle FEC = \angle EFC$,$\therefore CF = CE = 1$,
$\therefore BE = 4$,$\therefore AB =$
4
。
答案:
解 $\because$ 四边形 $ABCD$ 是平行四边形,
$\therefore AD// BC$,$\angle BAD = \angle C$,$AD = BC = 5$,$\therefore\angle DAE = \angle AEB$,
又 $\because AE$ 平分 $\angle BAD$,
$\therefore\angle BAE = \angle DAE$,
$\therefore\angle AEB = \angle BAE$,$\therefore BE = AB$。
设 $\angle BAE = x$,则 $\angle C = \angle BAD = 2x$,$\angle B = 180^{\circ} - 2x$。
$\because AE\perp EF$,$\therefore\angle AEF = 90^{\circ}$,
$\therefore\angle FEC = 90^{\circ} - x$,
$\because\angle EFC = 180^{\circ} - (\angle C + \angle CEF) = 180^{\circ} - (2x + 90^{\circ} - x) = 90^{\circ} - x$,
$\therefore\angle FEC = \angle EFC$,$\therefore CF = CE = 1$,
$\therefore BE = 4$,$\therefore AB = 4$。
$\therefore AD// BC$,$\angle BAD = \angle C$,$AD = BC = 5$,$\therefore\angle DAE = \angle AEB$,
又 $\because AE$ 平分 $\angle BAD$,
$\therefore\angle BAE = \angle DAE$,
$\therefore\angle AEB = \angle BAE$,$\therefore BE = AB$。
设 $\angle BAE = x$,则 $\angle C = \angle BAD = 2x$,$\angle B = 180^{\circ} - 2x$。
$\because AE\perp EF$,$\therefore\angle AEF = 90^{\circ}$,
$\therefore\angle FEC = 90^{\circ} - x$,
$\because\angle EFC = 180^{\circ} - (\angle C + \angle CEF) = 180^{\circ} - (2x + 90^{\circ} - x) = 90^{\circ} - x$,
$\therefore\angle FEC = \angle EFC$,$\therefore CF = CE = 1$,
$\therefore BE = 4$,$\therefore AB = 4$。
查看更多完整答案,请扫码查看