2025年假期作业八年级数学人教版山东美术出版社
注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2025年假期作业八年级数学人教版山东美术出版社 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。
1. 如图,在边长为$6$的正方形$ABCD$中,$E$是边$CD$的中点,将$\triangle ADE$沿$AE$对折至$\triangle AFE$,延长$EF$交$BC$于点$G$,连接$AG$.
(1)求证:$\triangle ABG\cong\triangle AFG$;
(2)求$BG$的长.

(1)证明:在正方形$ABCD$中,$AD = AB$,$\angle D = \angle B = 90^{\circ}$。$\because$将$\triangle ADE$沿$AE$对折至$\triangle AFE$。$\therefore AD = AF$,$DE = EF$,$\angle D = \angle AFE = 90^{\circ}$。$\therefore AB = AF$,$\angle B = \angle$
(2)$\because \triangle ABG \cong \triangle AFG$,$\therefore BG = FG$。设$BG = FG = x(x > 0)$,则$GC = 6 - x$。$\because E$为$CD$的中点,$\therefore CE = DE = EF = 3$,$\therefore EG = 3 + x$。在$Rt\triangle CEG$中,$3^{2} + (6 - x)^{2} = (3 + x)^{2}$,解得$x =$
(1)求证:$\triangle ABG\cong\triangle AFG$;
(2)求$BG$的长.
(1)证明:在正方形$ABCD$中,$AD = AB$,$\angle D = \angle B = 90^{\circ}$。$\because$将$\triangle ADE$沿$AE$对折至$\triangle AFE$。$\therefore AD = AF$,$DE = EF$,$\angle D = \angle AFE = 90^{\circ}$。$\therefore AB = AF$,$\angle B = \angle$
AFG
,$\angle ABG = 90^{\circ}$。又$\because AG = AG$,$\therefore Rt\triangle ABG \cong Rt\triangle AFG$(HL
)。(2)$\because \triangle ABG \cong \triangle AFG$,$\therefore BG = FG$。设$BG = FG = x(x > 0)$,则$GC = 6 - x$。$\because E$为$CD$的中点,$\therefore CE = DE = EF = 3$,$\therefore EG = 3 + x$。在$Rt\triangle CEG$中,$3^{2} + (6 - x)^{2} = (3 + x)^{2}$,解得$x =$
2
,$\therefore BG =$2
。
答案:
解:
(1)证明:在正方形$ABCD$中,
$AD = AB$,$\angle D = \angle B = 90^{\circ}$。
$\because$将$\triangle ADE$沿$AE$对折至$\triangle AEF$。
$\therefore AD = AF$,$DE = EF$,$\angle D = \angle AFE = 90^{\circ}$。
$\therefore AB = AF$,$\angle B = \angle A$,$\angle ABG = 90^{\circ}$。
又$\because AG = AG$,$\therefore Rt\triangle ABG \cong Rt\triangle AFG(HL)$。
(2)$\because \triangle ABG \cong \triangle AFG$,$\therefore BG = FG$。
设$BG = FG = x(x > 0)$,则$GC = 6 - x$。
$\because E$为$CD$的中点,$\therefore CE = DE = EF = 3$,$\therefore EG = 3 + x$。
在$Rt\triangle CEG$中,$3^{2} + (6 - x)^{2} = (3 + x)^{2}$,解得$x = 2$,
$\therefore BG = 2$。
(1)证明:在正方形$ABCD$中,
$AD = AB$,$\angle D = \angle B = 90^{\circ}$。
$\because$将$\triangle ADE$沿$AE$对折至$\triangle AEF$。
$\therefore AD = AF$,$DE = EF$,$\angle D = \angle AFE = 90^{\circ}$。
$\therefore AB = AF$,$\angle B = \angle A$,$\angle ABG = 90^{\circ}$。
又$\because AG = AG$,$\therefore Rt\triangle ABG \cong Rt\triangle AFG(HL)$。
(2)$\because \triangle ABG \cong \triangle AFG$,$\therefore BG = FG$。
设$BG = FG = x(x > 0)$,则$GC = 6 - x$。
$\because E$为$CD$的中点,$\therefore CE = DE = EF = 3$,$\therefore EG = 3 + x$。
在$Rt\triangle CEG$中,$3^{2} + (6 - x)^{2} = (3 + x)^{2}$,解得$x = 2$,
$\therefore BG = 2$。
2. 如图,在$\mathrm{Rt}\triangle ABC$中,$\angle ACB=90^{\circ}$,$AB=5\mathrm{cm}$,$AC=3\mathrm{cm}$,动点$P$从点$B$出发沿射线$BC$以$1\mathrm{cm}/\mathrm{s}$的速度移动,设运动的时间为$t$秒.
(1)求$BC$边的长;
(2)当$\triangle ABP$为直角三角形时,借助图①求$t$的值;
(3)当$\triangle ABP$为等腰三角形时,借助图②求$t$的值.
(1)求$BC$边的长;
4 cm
(2)当$\triangle ABP$为直角三角形时,借助图①求$t$的值;
4 或$\frac{25}{4}$
(3)当$\triangle ABP$为等腰三角形时,借助图②求$t$的值.
$t = 5$或$t = 8$或$t = \frac{25}{8}$
答案:
(1)4 cm
(2)4 或$\frac{25}{4}$
(3)$t = 5$或$t = 8$或$t = \frac{25}{8}$
(1)4 cm
(2)4 或$\frac{25}{4}$
(3)$t = 5$或$t = 8$或$t = \frac{25}{8}$
查看更多完整答案,请扫码查看