7. 如图,已知$∠1+∠2= 180^{\circ}$,$∠DEF= ∠A$,试判断$∠ACB与∠DEB$的大小关系,并对结论进行说明.

答案:
∵∠2 + ∠BDC = 180°,
∠1 + ∠2 = 180°,
∴∠1 = ∠BDC.
∴AD//EF.
∴∠DEF = ∠BDE.
又
∵∠DEF = ∠A,
∴∠BDE = ∠A.
∴DE//AC.
∴∠ACB = ∠DEB.
∵∠2 + ∠BDC = 180°,
∠1 + ∠2 = 180°,
∴∠1 = ∠BDC.
∴AD//EF.
∴∠DEF = ∠BDE.
又
∵∠DEF = ∠A,
∴∠BDE = ∠A.
∴DE//AC.
∴∠ACB = ∠DEB.
8. 如图,$MN// BC$,$∠1= ∠2= 60^{\circ}$,$DC是∠NDE$的平分线. 求证:$∠ABC= ∠C$.

答案:
证明:
∵MN//BC,∠1 = ∠2 = 60°,
∴∠NDE + ∠2 = 180°,∠ABC = ∠1 = 60°,
∴∠NDE = 180°−∠2 = 180°−60° = 120°.
∵DC是∠NDE的角平分线,
∴∠EDC = ∠NDC = $\frac{1}{2}$∠NDE = 60°.
∵MN//BC,
∴∠C = ∠NDC = 60°,
∴∠ABC = ∠C.
∵MN//BC,∠1 = ∠2 = 60°,
∴∠NDE + ∠2 = 180°,∠ABC = ∠1 = 60°,
∴∠NDE = 180°−∠2 = 180°−60° = 120°.
∵DC是∠NDE的角平分线,
∴∠EDC = ∠NDC = $\frac{1}{2}$∠NDE = 60°.
∵MN//BC,
∴∠C = ∠NDC = 60°,
∴∠ABC = ∠C.
9. 如图,已知坐标平面内的三个点$A(1,3)$,$B(3,1)$,$O(0,0)$,求$\triangle ABO$的面积.

答案:
如图所示,分别过A,B作y轴,x轴的垂线,垂足为C,E,两线交于点D,
则C(0,3),D(3,3),E(3,0).
又因为O(0,0),A(1,3),B(3,1),
所以OC = 3,AC = 1,OE = 3,BE = 1.
AD = DC - AC = 3 - 1 = 2,
BD = DE - BE = 3 - 1 = 2.
所以四边形OCDE的面积为3×3 = 9,
△ACO和△BEO的面积都为$\frac{1}{2}$×3×1 = $\frac{3}{2}$,
△ABD的面积为$\frac{1}{2}$×2×2 = 2,
所以△ABO的面积为9 - 2×$\frac{3}{2}$ - 2 = 4.
如图所示,分别过A,B作y轴,x轴的垂线,垂足为C,E,两线交于点D,
则C(0,3),D(3,3),E(3,0).
又因为O(0,0),A(1,3),B(3,1),
所以OC = 3,AC = 1,OE = 3,BE = 1.
AD = DC - AC = 3 - 1 = 2,
BD = DE - BE = 3 - 1 = 2.
所以四边形OCDE的面积为3×3 = 9,
△ACO和△BEO的面积都为$\frac{1}{2}$×3×1 = $\frac{3}{2}$,
△ABD的面积为$\frac{1}{2}$×2×2 = 2,
所以△ABO的面积为9 - 2×$\frac{3}{2}$ - 2 = 4.
查看更多完整答案,请扫码查看