1. (新考法 分类讨论法)对于实数$a,b$,定义运算“$*$”:$a*b= \left\{\begin{array}{l} a^{2}-ab(a≤b)\\ b^{2}-ab(a>b)\end{array}\right. $,关于$x的方程(2x)*(x-1)= t+3$恰好有三个不相等的实数根,则$t$的取值范围是______.
答案:
$-3 < t < -2$【点拨】由新定义的运算可得,当$2x \leq x - 1$,即$x \leq -1$时,有$(2x)^2 - 2x(x - 1) = t + 3$,即$2x^2 + 2x - t - 3 = 0$,其根为$x = \frac{-1 \pm \sqrt{2t + 7}}{2}$;当$2x > x - 1$,即$x > -1$时,有$(x - 1)^2 - 2x(x - 1) = t + 3$,即$x^2 = -t - 2$。要使关于$x$的方程$(2x) * (x - 1) = t + 3$恰好有三个不相等的实数根,则$x^2 = -t - 2(x > -1)$和$2x^2 + 2x - t - 3 = 0(x \leq -1)$都必须有解,$\therefore \begin{cases} -t - 2 \geq 0, \\ 2t + 7 \geq 0. \end{cases}$ $\therefore -\frac{7}{2} \leq t \leq -2$。
(1)当$-t - 2 = 0$,即$t = -2$时,方程$x^2 = -t - 2(x > -1)$只有一个根$x = 0$。$\because$当$t = -2$时,$\sqrt{2t + 7} = \sqrt{3}$,$\therefore \frac{-1 + \sqrt{2t + 7}}{2} > 0$,$\frac{-1 - \sqrt{2t + 7}}{2} < -1$。$\therefore$此时方程$2x^2 + 2x - t - 3 = 0(x \leq -1)$只有一个根符合题意。$\therefore t = -2$不符合题意。
(2)当$-3 < t < -2$时,方程$x^2 = -t - 2(x > -1)$的两个根都大于$-1$,都符合题意。$\because$当$-3 < t < -2$时,$1 < \sqrt{2t + 7} < \sqrt{3}$,$\therefore \frac{-1 + \sqrt{2t + 7}}{2} > 0$,$\frac{-1 - \sqrt{2t + 7}}{2} < -1$。$\therefore$方程$2x^2 + 2x - t - 3 = 0(x \leq -1)$只有一个根符合题意。$\therefore$当$-3 < t < -2$时,$(2x) * (x - 1) = t + 3$恰好有三个不相等的实数根。
(3)$\because$当$-\frac{7}{2} \leq t \leq -3$时,方程$x^2 = -t - 2$的一个根$\geq 1$,另外一个根$\leq -1$,$\therefore$此时方程$x^2 = -t - 2(x > -1)$只有一个根符合题意。$\because -\frac{1}{2} \leq \frac{-1 + \sqrt{2t + 7}}{2} \leq 0$,$-1 \leq \frac{-1 - \sqrt{2t + 7}}{2} \leq -\frac{1}{2}$,$\therefore$当$-\frac{7}{2} \leq t \leq -3$时,方程$2x^2 + 2x - t - 3 = 0(x \leq -1)$最多有一个根符合题意。$\therefore$当$-\frac{7}{2} \leq t \leq -3$时,$(2x) * (x - 1) = t + 3$不可能有三个不相等的实数根。综上可知,$t$的取值范围是$-3 < t < -2$。
(1)当$-t - 2 = 0$,即$t = -2$时,方程$x^2 = -t - 2(x > -1)$只有一个根$x = 0$。$\because$当$t = -2$时,$\sqrt{2t + 7} = \sqrt{3}$,$\therefore \frac{-1 + \sqrt{2t + 7}}{2} > 0$,$\frac{-1 - \sqrt{2t + 7}}{2} < -1$。$\therefore$此时方程$2x^2 + 2x - t - 3 = 0(x \leq -1)$只有一个根符合题意。$\therefore t = -2$不符合题意。
(2)当$-3 < t < -2$时,方程$x^2 = -t - 2(x > -1)$的两个根都大于$-1$,都符合题意。$\because$当$-3 < t < -2$时,$1 < \sqrt{2t + 7} < \sqrt{3}$,$\therefore \frac{-1 + \sqrt{2t + 7}}{2} > 0$,$\frac{-1 - \sqrt{2t + 7}}{2} < -1$。$\therefore$方程$2x^2 + 2x - t - 3 = 0(x \leq -1)$只有一个根符合题意。$\therefore$当$-3 < t < -2$时,$(2x) * (x - 1) = t + 3$恰好有三个不相等的实数根。
(3)$\because$当$-\frac{7}{2} \leq t \leq -3$时,方程$x^2 = -t - 2$的一个根$\geq 1$,另外一个根$\leq -1$,$\therefore$此时方程$x^2 = -t - 2(x > -1)$只有一个根符合题意。$\because -\frac{1}{2} \leq \frac{-1 + \sqrt{2t + 7}}{2} \leq 0$,$-1 \leq \frac{-1 - \sqrt{2t + 7}}{2} \leq -\frac{1}{2}$,$\therefore$当$-\frac{7}{2} \leq t \leq -3$时,方程$2x^2 + 2x - t - 3 = 0(x \leq -1)$最多有一个根符合题意。$\therefore$当$-\frac{7}{2} \leq t \leq -3$时,$(2x) * (x - 1) = t + 3$不可能有三个不相等的实数根。综上可知,$t$的取值范围是$-3 < t < -2$。
2. (新视用 新定义题)定义新运算:对于两个不相等的实数$a,b$,我们规定符号$Max\{ a,b\} 表示a,b$中的较大值,如:$Max\{ 1,2\} = 2$.
(1)填空:$Max\{ -1,-3\} = $______;
(2)按照这个规定,解方程$Max\{ x,-x\} = \frac {x^{2}-3x-2}{2}$.
(1)填空:$Max\{ -1,-3\} = $______;
(2)按照这个规定,解方程$Max\{ x,-x\} = \frac {x^{2}-3x-2}{2}$.
答案:
【解】
(1)$-1$
(2)当$x > 0$时,有$\frac{x^2 - 3x - 2}{2} = x$,即$x^2 - 5x - 2 = 0$,解得$x = \frac{5 + \sqrt{33}}{2}$或$x = \frac{5 - \sqrt{33}}{2}$(舍去);当$x < 0$时,有$\frac{x^2 - 3x - 2}{2} = -x$,即$x^2 - x - 2 = 0$,解得$x = -1$或$x = 2$(舍去)。故方程的解为$x = \frac{5 + \sqrt{33}}{2}$或$x = -1$。
(1)$-1$
(2)当$x > 0$时,有$\frac{x^2 - 3x - 2}{2} = x$,即$x^2 - 5x - 2 = 0$,解得$x = \frac{5 + \sqrt{33}}{2}$或$x = \frac{5 - \sqrt{33}}{2}$(舍去);当$x < 0$时,有$\frac{x^2 - 3x - 2}{2} = -x$,即$x^2 - x - 2 = 0$,解得$x = -1$或$x = 2$(舍去)。故方程的解为$x = \frac{5 + \sqrt{33}}{2}$或$x = -1$。
3. [2024 宁波镇海区期末]定义:若一元二次方程$ax^{2}+bx+c= 0(a≠0)满足b= ac$,则称此方程为“蛟龙”方程.
(1)当$b<0$时,判断此时“蛟龙”方程$ax^{2}+bx+c= 0(a≠0)$解的情况,并说明理由;
(2)若“蛟龙”方程$2x^{2}+mx+n= 0$有两个相等的实数根,请解出此方程.
(1)当$b<0$时,判断此时“蛟龙”方程$ax^{2}+bx+c= 0(a≠0)$解的情况,并说明理由;
(2)若“蛟龙”方程$2x^{2}+mx+n= 0$有两个相等的实数根,请解出此方程.
答案:
【解】
(1)“蛟龙”方程$ax^2 + bx + c = 0(a \neq 0)$有两个不相等的实数根,理由如下:$\because$一元二次方程$ax^2 + bx + c = 0(a \neq 0)$为“蛟龙”方程,$\therefore b = ac$。$\because b < 0$,$\therefore \Delta = b^2 - 4ac = b^2 - 4b = b(b - 4) > 0$。$\therefore$“蛟龙”方程$ax^2 + bx + c = 0(a \neq 0)$有两个不相等的实数根。
(2)$\because$方程$2x^2 + mx + n = 0$为“蛟龙”方程,$\therefore m = 2n$。$\because$方程$2x^2 + mx + n = 0$有两个相等的实数根,$\therefore \Delta = m^2 - 4 \times 2n = 4n^2 - 8n = 0$。$\therefore n = 0$或$n = 2$。当$n = 0$时,方程为$2x^2 = 0$,解得$x_1 = x_2 = 0$;当$n = 2$时,方程为$2x^2 + 4x + 2 = 0$,解得$x_1 = x_2 = -1$。故此方程的解为$x_1 = x_2 = 0$或$x_1 = x_2 = -1$。
(1)“蛟龙”方程$ax^2 + bx + c = 0(a \neq 0)$有两个不相等的实数根,理由如下:$\because$一元二次方程$ax^2 + bx + c = 0(a \neq 0)$为“蛟龙”方程,$\therefore b = ac$。$\because b < 0$,$\therefore \Delta = b^2 - 4ac = b^2 - 4b = b(b - 4) > 0$。$\therefore$“蛟龙”方程$ax^2 + bx + c = 0(a \neq 0)$有两个不相等的实数根。
(2)$\because$方程$2x^2 + mx + n = 0$为“蛟龙”方程,$\therefore m = 2n$。$\because$方程$2x^2 + mx + n = 0$有两个相等的实数根,$\therefore \Delta = m^2 - 4 \times 2n = 4n^2 - 8n = 0$。$\therefore n = 0$或$n = 2$。当$n = 0$时,方程为$2x^2 = 0$,解得$x_1 = x_2 = 0$;当$n = 2$时,方程为$2x^2 + 4x + 2 = 0$,解得$x_1 = x_2 = -1$。故此方程的解为$x_1 = x_2 = 0$或$x_1 = x_2 = -1$。
4. 定义:如果一个数的平方等于$-1$,记为$i^{2}= -1$,这个数$i$叫做虚数单位,那么和我们所学的实数对应起来就叫做复数.复数一般表示为$a+bi(a,b$为实数),$a$叫做这个复数的实部,$b$叫做这个复数的虚部,它与整式的加法,减法,乘法运算类似.如:解方程$x^{2}= -1$,解得$x_{1}= i,x_{2}= -i$,同样我们也可以化简$\sqrt {-4}= \sqrt {4×(-1)}= \sqrt {2^{2}×i^{2}}= 2i$.
读完这段文字,请你解答以下问题:
(1)填空:$i^{3}= $______,$i^{4}= $______,$i^{2}+i^{3}+i^{4}+... +i^{2021}= $______;
(2)已知$(a+i)(b+i)= 1-3i$,写出一个以$a,b$的值为解的一元二次方程:______;
(3)在复数范围内,解一元二次方程$x^{2}-4x+8= 0$.
读完这段文字,请你解答以下问题:
(1)填空:$i^{3}= $______,$i^{4}= $______,$i^{2}+i^{3}+i^{4}+... +i^{2021}= $______;
(2)已知$(a+i)(b+i)= 1-3i$,写出一个以$a,b$的值为解的一元二次方程:______;
(3)在复数范围内,解一元二次方程$x^{2}-4x+8= 0$.
答案:
【解】
(1)$-i$;$1$;$0$
(2)$x^2 + 3x + 2 = 0$(答案不唯一)
(3)$\because x^2 - 4x + 8 = 0$,$\therefore x^2 - 4x = -8$。$\therefore (x - 2)^2 = 4i^2$。$\therefore x - 2 = \pm 2i$,解得$x_1 = 2 + 2i$,$x_2 = 2 - 2i$。【点拨】
(1)$i^3 = i \times i^2 = -i$,$i^4 = i^2 \times i^2 = -1 \times (-1) = 1$。$\because i^2 + i^3 + i^4 + i^5 = -1 - i + 1 + i = 0$,$i^2 + i^3 + i^4 + \cdots + i^{2021}$有$2020$个加数,$2020 \div 4 = 505$,$\therefore i^2 + i^3 + i^4 + \cdots + i^{2021} = 0$。
(2)$\because (a + i)(b + i) = 1 - 3i$,$\therefore ab + ai + bi + i^2 = 1 - 3i$。$\therefore ab - 1 + (a + b)i = 1 - 3i$。$\therefore ab - 1 = 1$,$a + b = -3$。$\therefore ab = 2$。$\therefore$以$a$,$b$的值为解的一元二次方程可以是$x^2 + 3x + 2 = 0$(答案不唯一)。
(1)$-i$;$1$;$0$
(2)$x^2 + 3x + 2 = 0$(答案不唯一)
(3)$\because x^2 - 4x + 8 = 0$,$\therefore x^2 - 4x = -8$。$\therefore (x - 2)^2 = 4i^2$。$\therefore x - 2 = \pm 2i$,解得$x_1 = 2 + 2i$,$x_2 = 2 - 2i$。【点拨】
(1)$i^3 = i \times i^2 = -i$,$i^4 = i^2 \times i^2 = -1 \times (-1) = 1$。$\because i^2 + i^3 + i^4 + i^5 = -1 - i + 1 + i = 0$,$i^2 + i^3 + i^4 + \cdots + i^{2021}$有$2020$个加数,$2020 \div 4 = 505$,$\therefore i^2 + i^3 + i^4 + \cdots + i^{2021} = 0$。
(2)$\because (a + i)(b + i) = 1 - 3i$,$\therefore ab + ai + bi + i^2 = 1 - 3i$。$\therefore ab - 1 + (a + b)i = 1 - 3i$。$\therefore ab - 1 = 1$,$a + b = -3$。$\therefore ab = 2$。$\therefore$以$a$,$b$的值为解的一元二次方程可以是$x^2 + 3x + 2 = 0$(答案不唯一)。
查看更多完整答案,请扫码查看