1. 已知$x = a^{2}+b^{2}+20$,$y = 4(2b - a)$,$x与y$的大小关系是()
A. $x\geqslant y$
B. $x\leqslant y$
C. $x\lt y$
D. $x\gt y$
A. $x\geqslant y$
B. $x\leqslant y$
C. $x\lt y$
D. $x\gt y$
答案:
A 【点拨】$x - y = a^{2} + b^{2} + 20 - 8b + 4a = (a + 2)^{2} + (b - 4)^{2}$.
$\because (a + 2)^{2} \geq 0$,$(b - 4)^{2} \geq 0$,$\therefore x - y \geq 0$.
$\therefore x \geq y$.
故选 A.
$\because (a + 2)^{2} \geq 0$,$(b - 4)^{2} \geq 0$,$\therefore x - y \geq 0$.
$\therefore x \geq y$.
故选 A.
2. 不论$x$,$y$取何有理数,$x^{2}+y^{2}-10x + 8y + 41$的值均为()
A. 正数
B. 零
C. 负数
D. 非负数
A. 正数
B. 零
C. 负数
D. 非负数
答案:
D 【点拨】$x^{2} + y^{2} - 10x + 8y + 41$
$= x^{2} - 10x + 25 + y^{2} + 8y + 16$
$= (x - 5)^{2} + (y + 4)^{2}$.
$\because (x - 5)^{2} \geq 0$,$(y + 4)^{2} \geq 0$,$\therefore (x - 5)^{2} + (y + 4)^{2} \geq 0$.
故选 D.
$= x^{2} - 10x + 25 + y^{2} + 8y + 16$
$= (x - 5)^{2} + (y + 4)^{2}$.
$\because (x - 5)^{2} \geq 0$,$(y + 4)^{2} \geq 0$,$\therefore (x - 5)^{2} + (y + 4)^{2} \geq 0$.
故选 D.
3. 若$W = 5x^{2}-4xy + y^{2}-2y + 8x + 3$($x$,$y$为实数),则$W$的最小值为______.
答案:
-2 【点拨】解法一:$W = 5x^{2} - 4xy + y^{2} - 2y + 8x + 3$
$= x^{2} + 4x^{2} - 4xy + y^{2} - 2y + 8x + 3$
$= 4x^{2} - 4xy + y^{2} - 2y + x^{2} + 8x + 3$
$= (2x - y)^{2} - 2y + x^{2} + 4x + 4x + 3$
$= (2x - y)^{2} + 4x - 2y + x^{2} + 4x + 3$
$= (2x - y)^{2} + 2(2x - y) + 1 - 1 + x^{2} + 4x + 4 - 4 + 3$
$= [(2x - y)^{2} + 2(2x - y) + 1] + (x^{2} + 4x + 4) - 2$
$= (2x - y + 1)^{2} + (x + 2)^{2} - 2$.
$\because x$,$y$均为实数,$\therefore (2x - y + 1)^{2} \geq 0$,$(x + 2)^{2} \geq 0$.
$\therefore W \geq - 2$,即$W$的最小值为$-2$.
解法二:由题意得$5x^{2} + (8 - 4y)x + (y^{2} - 2y + 3 - W) = 0$.
$\because x$为实数,
$\therefore$上述式子可以看成关于$x$的一元二次方程有实数解.
$\therefore \Delta = (8 - 4y)^{2} - 20(y^{2} - 2y + 3 - W) \geq 0$,
即$5W \geq (y + 3)^{2} - 10 \geq - 10$.
$\therefore W \geq - 2$.
$\therefore W$的最小值为$-2$.
$= x^{2} + 4x^{2} - 4xy + y^{2} - 2y + 8x + 3$
$= 4x^{2} - 4xy + y^{2} - 2y + x^{2} + 8x + 3$
$= (2x - y)^{2} - 2y + x^{2} + 4x + 4x + 3$
$= (2x - y)^{2} + 4x - 2y + x^{2} + 4x + 3$
$= (2x - y)^{2} + 2(2x - y) + 1 - 1 + x^{2} + 4x + 4 - 4 + 3$
$= [(2x - y)^{2} + 2(2x - y) + 1] + (x^{2} + 4x + 4) - 2$
$= (2x - y + 1)^{2} + (x + 2)^{2} - 2$.
$\because x$,$y$均为实数,$\therefore (2x - y + 1)^{2} \geq 0$,$(x + 2)^{2} \geq 0$.
$\therefore W \geq - 2$,即$W$的最小值为$-2$.
解法二:由题意得$5x^{2} + (8 - 4y)x + (y^{2} - 2y + 3 - W) = 0$.
$\because x$为实数,
$\therefore$上述式子可以看成关于$x$的一元二次方程有实数解.
$\therefore \Delta = (8 - 4y)^{2} - 20(y^{2} - 2y + 3 - W) \geq 0$,
即$5W \geq (y + 3)^{2} - 10 \geq - 10$.
$\therefore W \geq - 2$.
$\therefore W$的最小值为$-2$.
4. 阅读下面的解题过程.
求$y^{2}+4y + 8$的最小值.
解:$y^{2}+4y + 8 = y^{2}+4y + 4 - 4 + 8 = (y + 2)^{2}+4$.
$\because(y + 2)^{2}\geqslant0$,即$(y + 2)^{2}$的最小值为0,
$\therefore y^{2}+4y + 8$的最小值为4.
仿照上面的解题过程,求$m^{2}+m + 4的最小值和4 - x^{2}+2x$的最大值.
求$y^{2}+4y + 8$的最小值.
解:$y^{2}+4y + 8 = y^{2}+4y + 4 - 4 + 8 = (y + 2)^{2}+4$.
$\because(y + 2)^{2}\geqslant0$,即$(y + 2)^{2}$的最小值为0,
$\therefore y^{2}+4y + 8$的最小值为4.
仿照上面的解题过程,求$m^{2}+m + 4的最小值和4 - x^{2}+2x$的最大值.
答案:
【解】$m^{2} + m + 4 = (m + \frac{1}{2})^{2} + \frac{15}{4}$.
$\because (m + \frac{1}{2})^{2} \geq 0$,
$\therefore (m + \frac{1}{2})^{2} + \frac{15}{4} \geq \frac{15}{4}$.
$\therefore m^{2} + m + 4$的最小值是$\frac{15}{4}$.
$4 - x^{2} + 2x = - (x - 1)^{2} + 5$.
$\because - (x - 1)^{2} \leq 0$,
$\therefore - (x - 1)^{2} + 5 \leq 5$.
$\therefore 4 - x^{2} + 2x$的最大值为$5$.
$\because (m + \frac{1}{2})^{2} \geq 0$,
$\therefore (m + \frac{1}{2})^{2} + \frac{15}{4} \geq \frac{15}{4}$.
$\therefore m^{2} + m + 4$的最小值是$\frac{15}{4}$.
$4 - x^{2} + 2x = - (x - 1)^{2} + 5$.
$\because - (x - 1)^{2} \leq 0$,
$\therefore - (x - 1)^{2} + 5 \leq 5$.
$\therefore 4 - x^{2} + 2x$的最大值为$5$.
5. 已知$x$,$y$是实数,$\sqrt{3x + 4}+y^{2}-6y + 9 = 0$,则$3x - y$的值是()
A. $\frac{1}{4}$
B. $-7$
C. $-1$
D. $-\frac{7}{4}$
A. $\frac{1}{4}$
B. $-7$
C. $-1$
D. $-\frac{7}{4}$
答案:
B 【点拨】$\because \sqrt{3x + 4} + y^{2} - 6y + 9 = 0$,
$\therefore \sqrt{3x + 4} + (y - 3)^{2} = 0$.
$\because \sqrt{3x + 4} \geq 0$,$(y - 3)^{2} \geq 0$,
$\therefore 3x + 4 = 0$,$y - 3 = 0$.
$\therefore x = - \frac{4}{3}$,$y = 3$.
$\therefore 3x - y = - 7$.
故选 B.
$\therefore \sqrt{3x + 4} + (y - 3)^{2} = 0$.
$\because \sqrt{3x + 4} \geq 0$,$(y - 3)^{2} \geq 0$,
$\therefore 3x + 4 = 0$,$y - 3 = 0$.
$\therefore x = - \frac{4}{3}$,$y = 3$.
$\therefore 3x - y = - 7$.
故选 B.
6. 我们定义:一个整数能表示成$a^{2}+b^{2}$($a$,$b$是整数)的形式,则称这个数为“完美数”.
例如,5是“完美数”.理由:因为$5 = 2^{2}+1^{2}$,所以5是“完美数”.
解决问题:(1)61______“完美数”(填“是”或“不是”);
探究问题:(2)已知$x^{2}+2y^{2}-4x + 4y + 6 = 0$,则$x + y = $______;
(3)已知$S = 5x^{2}+y^{2}+2xy + 12x + k$($x$,$y$是整数,$k$是常数),要使$S$为“完美数”,试求出符合条件的$k$值;
拓展结论:(4)已知$x$,$y满足-x^{2}+\frac{2}{3}x - y + 1 = 0$,求$7x - 3y$的最小值.
例如,5是“完美数”.理由:因为$5 = 2^{2}+1^{2}$,所以5是“完美数”.
解决问题:(1)61______“完美数”(填“是”或“不是”);
探究问题:(2)已知$x^{2}+2y^{2}-4x + 4y + 6 = 0$,则$x + y = $______;
(3)已知$S = 5x^{2}+y^{2}+2xy + 12x + k$($x$,$y$是整数,$k$是常数),要使$S$为“完美数”,试求出符合条件的$k$值;
拓展结论:(4)已知$x$,$y满足-x^{2}+\frac{2}{3}x - y + 1 = 0$,求$7x - 3y$的最小值.
答案:
【解】
(1)是 【点拨】$\because 61 = 5^{2} + 6^{2}$,
$\therefore 61$是“完美数”.
(2)1 【点拨】$\because x^{2} + 2y^{2} - 4x + 4y + 6 = (x - 2)^{2} + 2(y + 1)^{2} = 0$,
$\therefore x = 2$,$y = - 1$.
$\therefore x + y = 1$.
(3)$S = 5x^{2} + y^{2} + 2xy + 12x + k$
$= x^{2} + y^{2} + 2xy + (4x^{2} + 12x + k)$
$= (x + y)^{2} + [(2x + 3)^{2} - 9 + k]$.
$\because$要使$S$为“完美数”,$\therefore - 9 + k = 0$.
$\therefore k = 9$.
(4)$\because - x^{2} + \frac{2}{3}x - y + 1 = 0$,
$\therefore - y = x^{2} - \frac{2}{3}x - 1$.
$\therefore - 3y = 3x^{2} - 2x - 3$.
$\therefore 7x - 3y = 3x^{2} + 5x - 3 = 3(x^{2} + \frac{5}{3}x + \frac{25}{36} - \frac{25}{36}) - 3 = 3(x + \frac{5}{6})^{2} - \frac{61}{12} \geq - \frac{61}{12}$.
$\therefore 7x - 3y$的最小值为$- \frac{61}{12}$.
(1)是 【点拨】$\because 61 = 5^{2} + 6^{2}$,
$\therefore 61$是“完美数”.
(2)1 【点拨】$\because x^{2} + 2y^{2} - 4x + 4y + 6 = (x - 2)^{2} + 2(y + 1)^{2} = 0$,
$\therefore x = 2$,$y = - 1$.
$\therefore x + y = 1$.
(3)$S = 5x^{2} + y^{2} + 2xy + 12x + k$
$= x^{2} + y^{2} + 2xy + (4x^{2} + 12x + k)$
$= (x + y)^{2} + [(2x + 3)^{2} - 9 + k]$.
$\because$要使$S$为“完美数”,$\therefore - 9 + k = 0$.
$\therefore k = 9$.
(4)$\because - x^{2} + \frac{2}{3}x - y + 1 = 0$,
$\therefore - y = x^{2} - \frac{2}{3}x - 1$.
$\therefore - 3y = 3x^{2} - 2x - 3$.
$\therefore 7x - 3y = 3x^{2} + 5x - 3 = 3(x^{2} + \frac{5}{3}x + \frac{25}{36} - \frac{25}{36}) - 3 = 3(x + \frac{5}{6})^{2} - \frac{61}{12} \geq - \frac{61}{12}$.
$\therefore 7x - 3y$的最小值为$- \frac{61}{12}$.
查看更多完整答案,请扫码查看