2025年高考总复习优化设计高中数学北师大版


注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2025年高考总复习优化设计高中数学北师大版 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。



《2025年高考总复习优化设计高中数学北师大版》

第156页
例3 (2022·新高考Ⅰ,17)记$S_n$为数列$\{ a_n\}$的前$n$项和,已知$a_1 = 1,\{\frac{S_n}{a_n}\}$是公差为$\frac{1}{3}$的等差数列.
(1)求$\{ a_n\}$的通项公式;
(2)证明:$\frac{1}{a_1}+\frac{1}{a_2}+\cdots+\frac{1}{a_n}<2$.
[课堂笔记]
例3 (1)解(方法一)$\because \{\frac{S_n}{a_n}\}$是以$\frac{S_1}{a_1} = 1$为首项,以$\frac{1}{3}$为公差的等差数列,
$\therefore \frac{S_n}{a_n} = 1 + (n - 1) × \frac{1}{3} = \frac{n + 2}{3}$.
$\therefore S_n = \frac{n + 2}{3}a_n$.①
当$n \geq 2$时,$S_{n - 1} = \frac{n + 1}{3}a_{n - 1}$.②
① - ②得$a_n = \frac{n + 2}{3}a_n - \frac{n + 1}{3}a_{n - 1}$,
$\therefore \frac{n + 1}{3}a_{n - 1} = \frac{n - 1}{3}a_n$,$\therefore \frac{a_n}{a_{n - 1}} = \frac{n + 1}{n - 1}$,
$\therefore a_n = \frac{a_n}{a_{n - 1}} \cdot \frac{a_{n - 1}}{a_{n - 2}} \cdots \frac{a_2}{a_1} \cdot a_1 = \frac{n + 1}{n - 1} × \frac{n}{n - 2} × \frac{n - 1}{n - 3} × \cdots × \frac{4}{2} × \frac{3}{1} × a_1 (n \geq 2)$.
又$a_1 = 1$,$\therefore a_n = \frac{n(n + 1)}{2 × 1} × 1 = \frac{n(n + 1)}{2} (n \geq 2)$.
又当$n = 1$时,$a_1 = 1$也符合上式,
$\therefore a_n = \frac{n(n + 1)}{2}$.
(方法二)$\because \{\frac{S_n}{a_n}\}$是以$\frac{S_1}{a_1} = 1$为首项,以$\frac{1}{3}$为公差的等差数列,$\therefore \frac{S_n}{a_n} = 1 + (n - 1) × \frac{1}{3} = \frac{n + 2}{3} \cdot S_n = \frac{n + 2}{3}a_n$.①
当$n \geq 2$时,$S_{n - 1} = \frac{n + 1}{3}a_{n - 1}$.②
① - ②得$a_n = \frac{n + 2}{3}a_n - \frac{n + 1}{3}a_{n - 1}$,
$\therefore \frac{a_n}{n + 1} = \frac{a_{n - 1}}{n - 1} \cdots \frac{a_n}{a_{n - 1}} = \frac{n + 1}{n - 1} \cdot n$,
设$\frac{a_n}{n(n + 1)} = b_n$,则$b_n = b_{n - 1}$,
$\therefore \{b_n\}$为常数列,且$b_1 = \frac{a_1}{1 × 2} = \frac{1}{2}$,
$\therefore \frac{a_n}{n(n + 1)} = \frac{1}{2}$,$\therefore a_n = \frac{n(n + 1)}{2}$.
(2)证明 由(1)知,$\frac{1}{a_n} = \frac{2}{n(n + 1)} = 2(\frac{1}{n} - \frac{1}{n + 1})$,
$\therefore \frac{1}{a_1} + \frac{1}{a_2} + \cdots + \frac{1}{a_n} = 2(1 - \frac{1}{2} + \frac{1}{2} - \frac{1}{3} + \cdots + \frac{1}{n} - \frac{1}{n + 1}) = 2(1 - \frac{1}{n + 1}) < 2$.
变式探究 证明 因为$\frac{1}{a_n} = \frac{2}{n(n + 2)} = \frac{1}{n} - \frac{1}{n + 2}$,
所以$\frac{1}{a_1} + \frac{1}{a_2} + \cdots + \frac{1}{a_n} = (1 - \frac{1}{3}) + (\frac{1}{2} - \frac{1}{4}) + (\frac{1}{3} - \frac{1}{5}) + \cdots + (\frac{1}{n - 1} - \frac{1}{n + 1}) + (\frac{1}{n} - \frac{1}{n + 2}) = 1 + \frac{1}{2} - \frac{1}{n + 1} - \frac{1}{n + 2} < \frac{3}{2} < \frac{n + 1}{n + 2} < \frac{3}{2}$.

|变式探究|
(变条件变结论)若本例中$\{ a_n\}$的通项公式$a_n=\frac{n(n + 2)}{2}$,证明:$\frac{1}{a_1}+\frac{1}{a_2}+\cdots+\frac{1}{a_n}<\frac{3}{2}$.
答案: 例3
(1)解(方法一)$\because \{\frac{S_n}{a_n}\}$是以$\frac{S_1}{a_1} = 1$为首项,以$\frac{1}{3}$为公差的等差数列,
$\therefore \frac{S_n}{a_n} = 1 + (n - 1) × \frac{1}{3} = \frac{n + 2}{3}$.
$\therefore S_n = \frac{n + 2}{3}a_n$.①
当$n \geq 2$时,$S_{n - 1} = \frac{n + 1}{3}a_{n - 1}$.②
① - ②得$a_n = \frac{n + 2}{3}a_n - \frac{n + 1}{3}a_{n - 1}$,
$\therefore \frac{n + 1}{3}a_{n - 1} = \frac{n - 1}{3}a_n$,$\therefore \frac{a_n}{a_{n - 1}} = \frac{n + 1}{n - 1}$,
$\therefore a_n = \frac{a_n}{a_{n - 1}} \cdot \frac{a_{n - 1}}{a_{n - 2}} \cdots \frac{a_2}{a_1} \cdot a_1 = \frac{n + 1}{n - 1} × \frac{n}{n - 2} × \frac{n - 1}{n - 3} × \cdots × \frac{4}{2} × \frac{3}{1} × a_1 (n \geq 2)$.
又$a_1 = 1$,$\therefore a_n = \frac{n(n + 1)}{2 × 1} × 1 = \frac{n(n + 1)}{2} (n \geq 2)$.
又当$n = 1$时,$a_1 = 1$也符合上式,
$\therefore a_n = \frac{n(n + 1)}{2}$.
(方法二)$\because \{\frac{S_n}{a_n}\}$是以$\frac{S_1}{a_1} = 1$为首项,以$\frac{1}{3}$为公差的等差数列,$\therefore \frac{S_n}{a_n} = 1 + (n - 1) × \frac{1}{3} = \frac{n + 2}{3} \cdot S_n = \frac{n + 2}{3}a_n$.①
当$n \geq 2$时,$S_{n - 1} = \frac{n + 1}{3}a_{n - 1}$.②
① - ②得$a_n = \frac{n + 2}{3}a_n - \frac{n + 1}{3}a_{n - 1}$,
$\therefore \frac{a_n}{n + 1} = \frac{a_{n - 1}}{n - 1} \cdots \frac{a_n}{a_{n - 1}} = \frac{n + 1}{n - 1} \cdot n$,
设$\frac{a_n}{n(n + 1)} = b_n$,则$b_n = b_{n - 1}$,
$\therefore \{b_n\}$为常数列,且$b_1 = \frac{a_1}{1 × 2} = \frac{1}{2}$,
$\therefore \frac{a_n}{n(n + 1)} = \frac{1}{2}$,$\therefore a_n = \frac{n(n + 1)}{2}$.
(2)证明 由
(1)知,$\frac{1}{a_n} = \frac{2}{n(n + 1)} = 2(\frac{1}{n} - \frac{1}{n + 1})$,
$\therefore \frac{1}{a_1} + \frac{1}{a_2} + \cdots + \frac{1}{a_n} = 2(1 - \frac{1}{2} + \frac{1}{2} - \frac{1}{3} + \cdots + \frac{1}{n} - \frac{1}{n + 1}) = 2(1 - \frac{1}{n + 1}) < 2$.
变式探究 证明 因为$\frac{1}{a_n} = \frac{2}{n(n + 2)} = \frac{1}{n} - \frac{1}{n + 2}$,
所以$\frac{1}{a_1} + \frac{1}{a_2} + \cdots + \frac{1}{a_n} = (1 - \frac{1}{3}) + (\frac{1}{2} - \frac{1}{4}) + (\frac{1}{3} - \frac{1}{5}) + \cdots + (\frac{1}{n - 1} - \frac{1}{n + 1}) + (\frac{1}{n} - \frac{1}{n + 2}) = 1 + \frac{1}{2} - \frac{1}{n + 1} - \frac{1}{n + 2} < \frac{3}{2} < \frac{n + 1}{n + 2} < \frac{3}{2}$.

查看更多完整答案,请扫码查看

关闭