2025年新课程示径学案作业设计九年级数学全一册苏科版


注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2025年新课程示径学案作业设计九年级数学全一册苏科版 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。



《2025年新课程示径学案作业设计九年级数学全一册苏科版》

第131页
1. 下列函数中,y 关于 x 的二次函数是(
B
)
A.$ y= 2x+3 $
B.$ y= 2x(x-3) $
C.$ y= \frac{1}{x^2} $
D.$ y= (x-2)^2-x^2 $
答案: B
2. 下列关于抛物线 $ y= -x^2-9 $ 的说法,正确的是(
B
)
A.抛物线开口向上
B.抛物线的对称轴是直线 $ x= 0 $
C.向右平移 3 个单位得到 $ y= (x+3)^2-9 $
D.抛物线的顶点坐标为 $ (-1,-9) $
答案: B
3. 把函数 $ y= x^2-2x+3 $ 的图像向右平移 1 个单位长度,平移后图像的函数表达式为(
C
)
A.$ y= x^2+2 $
B.$ y= (x-1)^2+1 $
C.$ y= (x-2)^2+2 $
D.$ y= (x-1)^2-3 $
答案: C
4. 如果一条抛物线的形状和开口方向与 $ y= -2x^2+2 $ 相同,且顶点坐标是 $ (4,2) $,则它的表达式是(
A
)
A.$ y= -2(x-4)^2+2 $
B.$ y= -2(x-4)^2-2 $
C.$ y= 2(x-4)^2+2 $
D.$ y= -2(x+4)^2-2 $
答案: A
5. 已知 $ y= ax^2+bx+c(a≠0) $ 的图像如图所示,则关于 x 的一元二次方程 $ ax^2+bx+c= 2(a≠0) $ 的解的个数是(
C
)
A.0
B.1
C.2
D.3
答案: C
6. 已知二次函数 $ y_1= ax^2+bx+c $ 与一次函数 $ y_2= kx+m $ 的图像相交于点 $ A(-2,3) $,$ B(8,2) $,则能使 $ y_1<y_2 $ 成立的 x 的取值范围是(
B
)
A.$ x<-2 $
B.$ -2<x<8 $
C.$ x<-2 $ 或 $ x>8 $
D.$ x>-2 $ 或 $ x<8 $
答案: B
7. 函数 $ y= x^2-x+1 $ 的图像与 x 轴的交点的情况是(
C
)
A.有两个交点
B.有一个交点
C.没有交点
D.无法判断
答案: C
8. 如图,以 $ (2,5) $ 为顶点的二次函数 $ y= ax^2+bx+c $ 的图像与 x 轴负半轴交于点 A,则一元二次方程 $ ax^2+bx+c= 0 $ 的正数解的范围是(
C
)
A.$ 2<x<3 $
B.$ 1<x<2 $
C.$ 4<x<5 $
D.$ 5<x<6 $
答案: C
9. 二次函数 $ y= (m-2)x^2+2x+1 $ 的图像与 x 轴有交点,则 m 取值范围是(
A
)
A.$ m≤3 $ 且 $ m≠2 $
B.$ m<3 $
C.$ m<3 $ 且 $ m≠2 $
D.$ m≤3 $
答案: A

查看更多完整答案,请扫码查看

关闭