3.如图,AB是⊙O的直径,AC是⊙O的切线,BC交⊙O于点D,AB = 6,AC = 8.求AD的长.

答案:
解:
∵AC是⊙O的切线,
∴∠BAC = 90°.
∵AB = 6,AC = 8,
∴BC = 10.
∵AB是⊙O的直径,
∴∠ADB = 90°,
∴AD = $\frac{6×8}{10}$ = $\frac{24}{5}$.
∵AC是⊙O的切线,
∴∠BAC = 90°.
∵AB = 6,AC = 8,
∴BC = 10.
∵AB是⊙O的直径,
∴∠ADB = 90°,
∴AD = $\frac{6×8}{10}$ = $\frac{24}{5}$.
4.如图,AB是⊙O的直径,C是⊙O上一点,过点C作⊙O的切线CD,交AB的延长线于点D,过点A作AE⊥CD,交DC的延长线于点E.

(1)若∠EAC = 25°,求∠ACD的度数;
(2)若OB = 2,BD = 1,求CE的长.
(1)若∠EAC = 25°,求∠ACD的度数;
(2)若OB = 2,BD = 1,求CE的长.
答案:
解:
(1)
∵AE⊥CD于点E,
∴∠AEC = 90°,
∴∠ACD = ∠AEC + ∠EAC = 115°.
(2)
∵CD是⊙O的切线,OC是⊙O的半径,
∴∠OCD = 90°.
在Rt△OCD中,
∵OC = OB = 2,OD = OB + BD = 3,
∴CD = $\sqrt{OD^{2}-OC^{2}}$ = $\sqrt{5}$.
∵∠OCD = ∠AEC = 90°,
∴OC//AE,
∴$\frac{CD}{CE}$ = $\frac{OD}{OA}$,即$\frac{\sqrt{5}}{CE}$ = $\frac{3}{2}$,
∴CE = $\frac{2}{3}\sqrt{5}$.
(1)
∵AE⊥CD于点E,
∴∠AEC = 90°,
∴∠ACD = ∠AEC + ∠EAC = 115°.
(2)
∵CD是⊙O的切线,OC是⊙O的半径,
∴∠OCD = 90°.
在Rt△OCD中,
∵OC = OB = 2,OD = OB + BD = 3,
∴CD = $\sqrt{OD^{2}-OC^{2}}$ = $\sqrt{5}$.
∵∠OCD = ∠AEC = 90°,
∴OC//AE,
∴$\frac{CD}{CE}$ = $\frac{OD}{OA}$,即$\frac{\sqrt{5}}{CE}$ = $\frac{3}{2}$,
∴CE = $\frac{2}{3}\sqrt{5}$.
查看更多完整答案,请扫码查看