11. 分解因式:$a^{2} - 7a = $______.
答案:
a(a-7)
12. 分解因式:$(a + 1)^{2} - 4a = $______.
答案:
(a-1)²
13. 已知$x^{2} - 2x - 1 = 0$,则$3x^{3} - 10x^{2} + 5x + 2027$的值为______.
答案:
2023
14. 聪聪和江江在将一个二次三项式分解因式时,聪聪因看错了一次项而分解成$3(x - 1)(x - 9)$,江江因看错了常数项而分解成$3(x - 2)(x - 4)$,则原多项式应因式分解为______.
答案:
3(x-3)²
15. 计算:$(1 - \frac{1}{2^{2}})×(1 - \frac{1}{3^{2}})×(1 - \frac{1}{4^{2}})×…×(1 - \frac{1}{2025^{2}}) = $______.
答案:
$\frac{1013}{2025}$
16. 在日常生活中,取款、上网等都需要密码.有一种用“因式分解”法产生的密码,其原理:对于多项式$x^{4} - y^{4}$,因式分解的结果是$(x - y)(x + y)(x^{2} + y^{2})$,当$x = 9$,$y = 9$时,$x - y = 0$,$x + y = 18$,$x^{2} + y^{2} = 162$,于是就可以把“$018162$”作为一个密码.对于多项式$4x^{3} - xy^{2}$,当$x = 11$,$y = 12$时,用上述方法产生的密码可能是______.(写出一个即可)
答案:
113410(答案不唯一)
17. 分解因式:
(1)$5ax^{2} + 20axy + 20ay^{2}$;
(2)$(3x - 4y)^{2} - (4x + 3y)^{2}$;
(3)$(x^{2} + 25)^{2} - 100x^{2}$;
(4)$(x^{2} - 7)^{2} + 18(7 - x^{2}) + 81$.
(1)$5ax^{2} + 20axy + 20ay^{2}$;
(2)$(3x - 4y)^{2} - (4x + 3y)^{2}$;
(3)$(x^{2} + 25)^{2} - 100x^{2}$;
(4)$(x^{2} - 7)^{2} + 18(7 - x^{2}) + 81$.
答案:
(1)原式=5a(x²+4xy+4y²)=5a(x+2y)²;
(2)原式=(3x-4y+4x+3y)·(3x-4y-4x-3y)=(7x-y)(-x-7y)=-(7x-y)(x+7y);
(3)原式=(x²+25+10x)(x²+25-10x)=(x+5)²(x-5)²;
(4)原式=(x²-7-9)²=(x²-16)²=(x+4)²(x-4)².
(1)原式=5a(x²+4xy+4y²)=5a(x+2y)²;
(2)原式=(3x-4y+4x+3y)·(3x-4y-4x-3y)=(7x-y)(-x-7y)=-(7x-y)(x+7y);
(3)原式=(x²+25+10x)(x²+25-10x)=(x+5)²(x-5)²;
(4)原式=(x²-7-9)²=(x²-16)²=(x+4)²(x-4)².
查看更多完整答案,请扫码查看