4. 某商店经销一批季节性小家电,每件成本40元.试销中发现这种小家电每天的销售量$p$(件)与每件的销售价$x$(元)满足关系:$p= 700-10x$.若该商店每天销售这种小家电要获得2000元的利润,那么每件的售价应定为多少元?每天要售出多少件?
答案:
解:根据题意,每件利润为$(x - 40)$元,销售量为$p = 700 - 10x$件,总利润为$2000$元,可得方程:
$(x - 40)(700 - 10x) = 2000$
展开并整理得:$x^2 - 110x + 3000 = 0$
因式分解得:$(x - 50)(x - 60) = 0$
解得:$x_1 = 50$,$x_2 = 60$
当$x = 50$时,$p = 700 - 10×50 = 200$(件)
当$x = 60$时,$p = 700 - 10×60 = 100$(件)
答:每件售价应定为50元,每天售出200件;或每件售价定为60元,每天售出100件。
$(x - 40)(700 - 10x) = 2000$
展开并整理得:$x^2 - 110x + 3000 = 0$
因式分解得:$(x - 50)(x - 60) = 0$
解得:$x_1 = 50$,$x_2 = 60$
当$x = 50$时,$p = 700 - 10×50 = 200$(件)
当$x = 60$时,$p = 700 - 10×60 = 100$(件)
答:每件售价应定为50元,每天售出200件;或每件售价定为60元,每天售出100件。
5. 如图2,在矩形$ABCD$中,$AB= 6\ \text{cm},BC= 12\ \text{cm}$,点$P从点A沿边AB向点B$以1 cm/s的速度移动;同时,点$Q从点B沿边BC向点C$以2 cm/s的速度移动,设运动的时间为$t$秒,有一点到终点运动即停止.问:是否存在这样的时刻,使$S_{\triangle DPQ}= 28\ \text{cm}^2$?若存在,请求出$t$的值;若不存在,请说明理由.

答案:
解:由题意得,运动时间为$t$秒,$AP = t\ \text{cm}$,$BQ = 2t\ \text{cm}$,其中$0 \leq t \leq 6$(因为$P$到$B$停止,$AB=6\ \text{cm}$,速度$1\ \text{cm/s}$)。
则$PB = AB - AP = 6 - t\ \text{cm}$,$QC = BC - BQ = 12 - 2t\ \text{cm}$。
矩形$ABCD$面积为$AB × BC = 6 × 12 = 72\ \text{cm}^2$。
$S_{\triangle APD} = \frac{1}{2} × AP × AD = \frac{1}{2} × t × 12 = 6t\ \text{cm}^2$,
$S_{\triangle PBQ} = \frac{1}{2} × PB × BQ = \frac{1}{2} × (6 - t) × 2t = t(6 - t)\ \text{cm}^2$,
$S_{\triangle QCD} = \frac{1}{2} × QC × CD = \frac{1}{2} × (12 - 2t) × 6 = 3(12 - 2t) = 36 - 6t\ \text{cm}^2$。
因为$S_{\triangle DPQ} = S_{矩形ABCD} - S_{\triangle APD} - S_{\triangle PBQ} - S_{\triangle QCD}$,
所以$28 = 72 - 6t - t(6 - t) - (36 - 6t)$,
化简得:$28 = 72 - 6t - 6t + t^2 - 36 + 6t$,
$28 = t^2 - 6t + 36$,
$t^2 - 6t + 8 = 0$,
$(t - 2)(t - 4) = 0$,
解得$t_1 = 2$,$t_2 = 4$,均在$0 \leq t \leq 6$范围内。
答:存在时刻$t = 2\ \text{秒}$或$t = 4\ \text{秒}$,使$S_{\triangle DPQ}= 28\ \text{cm}^2$。
则$PB = AB - AP = 6 - t\ \text{cm}$,$QC = BC - BQ = 12 - 2t\ \text{cm}$。
矩形$ABCD$面积为$AB × BC = 6 × 12 = 72\ \text{cm}^2$。
$S_{\triangle APD} = \frac{1}{2} × AP × AD = \frac{1}{2} × t × 12 = 6t\ \text{cm}^2$,
$S_{\triangle PBQ} = \frac{1}{2} × PB × BQ = \frac{1}{2} × (6 - t) × 2t = t(6 - t)\ \text{cm}^2$,
$S_{\triangle QCD} = \frac{1}{2} × QC × CD = \frac{1}{2} × (12 - 2t) × 6 = 3(12 - 2t) = 36 - 6t\ \text{cm}^2$。
因为$S_{\triangle DPQ} = S_{矩形ABCD} - S_{\triangle APD} - S_{\triangle PBQ} - S_{\triangle QCD}$,
所以$28 = 72 - 6t - t(6 - t) - (36 - 6t)$,
化简得:$28 = 72 - 6t - 6t + t^2 - 36 + 6t$,
$28 = t^2 - 6t + 36$,
$t^2 - 6t + 8 = 0$,
$(t - 2)(t - 4) = 0$,
解得$t_1 = 2$,$t_2 = 4$,均在$0 \leq t \leq 6$范围内。
答:存在时刻$t = 2\ \text{秒}$或$t = 4\ \text{秒}$,使$S_{\triangle DPQ}= 28\ \text{cm}^2$。
查看更多完整答案,请扫码查看