2025年桂壮红皮书暑假天地河北少年儿童出版社八年级数学冀教版
注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2025年桂壮红皮书暑假天地河北少年儿童出版社八年级数学冀教版 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。
第18页
- 第1页
- 第2页
- 第3页
- 第4页
- 第5页
- 第6页
- 第7页
- 第8页
- 第9页
- 第10页
- 第11页
- 第12页
- 第13页
- 第14页
- 第15页
- 第16页
- 第17页
- 第18页
- 第19页
- 第20页
- 第21页
- 第22页
- 第23页
- 第24页
- 第25页
- 第26页
- 第27页
- 第28页
- 第29页
- 第30页
- 第31页
- 第32页
- 第33页
- 第34页
- 第35页
- 第36页
- 第37页
- 第38页
- 第39页
- 第40页
- 第41页
- 第42页
- 第43页
- 第44页
- 第45页
- 第46页
- 第47页
- 第48页
- 第49页
- 第50页
- 第51页
- 第52页
- 第53页
- 第54页
- 第55页
- 第56页
- 第57页
- 第58页
- 第59页
- 第60页
- 第61页
- 第62页
- 第63页
- 第64页
12. 已知点$P(2a,1-3a)$在第二象限,且点 P到x轴的距离与到y轴的距离之和为 6,则 a 的值为(
A.-1
B.1
C.5
D.3
A
)A.-1
B.1
C.5
D.3
答案:
A
13. 在平面直角坐标系中,对于点$P(x,y)$,我们把$P_{1}(y-1,-x-1)$叫做点 P 的友好点. 已知点$A_{1}的友好点为A_{2}$,点$A_{2}的友好点为A_{3}$,点$A_{3}的友好点为A_{4}$,这样依次得到各点. 若点$A_{1}的坐标为(1,2)$,则点$A_{2024}$的友好点的坐标是(
A.$(-3,2)$
B.$(1,2)$
C.$(-5,-2)$
D.$(-3,4)$
B
)A.$(-3,2)$
B.$(1,2)$
C.$(-5,-2)$
D.$(-3,4)$
答案:
B
14. 如果点$P(a+b,ab)$在第二象限,那么点$Q(a,-b)$在第
二
象限.
答案:
二
15. 已知点$P(x,y)$,如果$|x|= 2,|y|= 3$,那么点 P 的坐标为
$(2,3)$或$(2,-3)$或$(-2,3)$或$(-2,-3)$
.
答案:
$(2,3)$或$(2,-3)$或$(-2,3)$或$(-2,-3)$
16. 已知正方形的边长为 8,它在平面直角坐标系中的位置如图 2 所示,其中 AD 平行于x轴.
(1)写出 A,B,C,D 四个点的坐标;
A(
(2)将正方形向右平移 4 个单位长度,直接写出平移后点 A 的坐标.
(
(1)写出 A,B,C,D 四个点的坐标;
A(
-4
,4
),B(-4
,-4
),C(4
,-4
),D(4
,4
)(2)将正方形向右平移 4 个单位长度,直接写出平移后点 A 的坐标.
(
0,4
)
答案:
(1)$A(-4,4)$,$B(-4,-4)$,$C(4,-4)$,$D(4,4)$
(2)$(0,4)$
(1)$A(-4,4)$,$B(-4,-4)$,$C(4,-4)$,$D(4,4)$
(2)$(0,4)$
17. 在平面直角坐标系中,已知点 Q 的坐标为$(2a,3a-1).$
(1)若点 Q 在第三象限,且到两坐标轴的距离之和为 16,求点 Q 的坐标;
(2)若点 Q 到两坐标轴的距离相等,求点Q 的坐标.
(1)若点 Q 在第三象限,且到两坐标轴的距离之和为 16,求点 Q 的坐标;
(2)若点 Q 到两坐标轴的距离相等,求点Q 的坐标.
答案:
(1) 解:因为点Q在第三象限,所以$2a<0$,$3a-1<0$,即$a<0$。
点Q到x轴距离为$|3a-1|=1-3a$,到y轴距离为$|2a|=-2a$。
由题意得$1-3a+(-2a)=16$,解得$a=-3$。
则$2a=-6$,$3a-1=-10$,所以$Q(-6,-10)$。
(2) 解:因为点Q到两坐标轴距离相等,所以$|2a|=|3a-1|$。
情况一:$2a=3a-1$,解得$a=1$,则$2a=2$,$3a-1=2$,所以$Q(2,2)$。
情况二:$2a=-(3a-1)$,解得$a=\frac{1}{5}$,则$2a=\frac{2}{5}$,$3a-1=-\frac{2}{5}$,所以$Q(\frac{2}{5},-\frac{2}{5})$。
综上,点Q的坐标为$(2,2)$或$(\frac{2}{5},-\frac{2}{5})$。
(1) 解:因为点Q在第三象限,所以$2a<0$,$3a-1<0$,即$a<0$。
点Q到x轴距离为$|3a-1|=1-3a$,到y轴距离为$|2a|=-2a$。
由题意得$1-3a+(-2a)=16$,解得$a=-3$。
则$2a=-6$,$3a-1=-10$,所以$Q(-6,-10)$。
(2) 解:因为点Q到两坐标轴距离相等,所以$|2a|=|3a-1|$。
情况一:$2a=3a-1$,解得$a=1$,则$2a=2$,$3a-1=2$,所以$Q(2,2)$。
情况二:$2a=-(3a-1)$,解得$a=\frac{1}{5}$,则$2a=\frac{2}{5}$,$3a-1=-\frac{2}{5}$,所以$Q(\frac{2}{5},-\frac{2}{5})$。
综上,点Q的坐标为$(2,2)$或$(\frac{2}{5},-\frac{2}{5})$。
18. 如图 3,在平面直角坐标系中,$\triangle ABC的顶点坐标分别A(-4,4),B(-5,1),C(-1,3)$,现将$\triangle ABC$先向右平移 6 个单位长度,再向下平移 5 个单位长度,得到$\triangle A'B'C'.$

(1)直接写出点$A',B',C'$的坐标;
(2)在平面直角坐标系中画出$\triangle A'B'C';$
(3)求在平移过程中,线段 BC 扫过的面积.
(1)直接写出点$A',B',C'$的坐标;
(2)在平面直角坐标系中画出$\triangle A'B'C';$
(3)求在平移过程中,线段 BC 扫过的面积.
答案:
(1)$A'(2,-1)$,$B'(1,-4)$,$C'(5,-2)$。
(2)
(3)32
(1)$A'(2,-1)$,$B'(1,-4)$,$C'(5,-2)$。
(2)
(3)32
查看更多完整答案,请扫码查看