2025年暑假作业内蒙古大学出版社八年级数学
注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2025年暑假作业内蒙古大学出版社八年级数学 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。
4. 在平面直角坐标系中,$P(a,b)$是第一象限内一点,给出如下定义:$k_{1}= \frac{a}{b}和k_{2}= \frac{b}{a}两个值中的最大值叫做点P$的“倾斜系数”$k$.

(1)求点$P(6,2)$的“倾斜系数”$k$的值;
(2)①若点$P(a,b)$的“倾斜系数”$k = 2$,请写出$a和b$的数量关系,并说明理由;
②若点$P(a,b)$的“倾斜系数”$k = 2$,且$a + b = 3$,求$OP$的长;
(3)如图,边长为$2的正方形ABCD沿直线AC:y = x$运动,$P(a,b)是正方形ABCD$上任意一点,且点$P$的“倾斜系数”$k\lt\sqrt{3}$,请直接写出$a$的取值范围.
(1)求点$P(6,2)$的“倾斜系数”$k$的值;
(2)①若点$P(a,b)$的“倾斜系数”$k = 2$,请写出$a和b$的数量关系,并说明理由;
②若点$P(a,b)$的“倾斜系数”$k = 2$,且$a + b = 3$,求$OP$的长;
(3)如图,边长为$2的正方形ABCD沿直线AC:y = x$运动,$P(a,b)是正方形ABCD$上任意一点,且点$P$的“倾斜系数”$k\lt\sqrt{3}$,请直接写出$a$的取值范围.
答案:
解:
(1)由题意知,k = $\frac{6}{2}$ = 3,即点P(6,2)的“倾斜系数”k的值为3;
(2)①
∵点P(a,b)的“倾斜系数”k = 2,
∴$\frac{a}{b}$ = 2或$\frac{b}{a}$ = 2,即a = 2b或b = 2a,
∴a和b的数量关系为a = 2b或b = 2a;②由①知,a = 2b或b = 2a
∵a + b = 3,
∴$\begin{cases} a = 1 \\ b = 2 \end{cases}$或$\begin{cases} a = 2 \\ b = 1 \end{cases}$,
∴OP = $\sqrt{1^2 + 2^2}$ = $\sqrt{5}$;
(3)由题意知,满足条件的P点在直线y = $\sqrt{3}$x 和直线y = $\frac{\sqrt{3}}{3}$x之间,①当P点与D点重合时,且k = $\sqrt{3}$时,P点在直线y = $\sqrt{3}$x上,a有最小临界值,如图:此时a < b,连接OD,延长DA交x轴于E,此时$\frac{b}{a}$ = $\sqrt{3}$,则$\frac{a + 2}{a}$ = $\sqrt{3}$,解得a = $\sqrt{3}$ + 1,此时B点的坐标为($\sqrt{3}$ + 3,$\sqrt{3}$ + 1),且k = $\frac{\sqrt{3} + 3}{\sqrt{3} + 1}$ = $\sqrt{3}$
∴a > $\sqrt{3}$ + 1;
②当P点与B点重合时,且k = $\sqrt{3}$时,P点在直线y = $\frac{\sqrt{3}}{3}$x上,a有最小临界值,如图:此时a > b,连接OB,延长CB交x轴于F,此时$\frac{a}{b}$ = $\sqrt{3}$,则$\frac{a}{a - 2}$ = $\sqrt{3}$,解得a = 3 + $\sqrt{3}$此时D($\sqrt{3}$ + 1,$\sqrt{3}$ + 3),且k = $\frac{\sqrt{3} + 3}{\sqrt{3} + 1}$ = $\sqrt{3}$,
∴a > $\sqrt{3}$ + 3;综上所述,若点P的“倾斜系数”k < $\sqrt{3}$,则a的取值范围.
解:
(1)由题意知,k = $\frac{6}{2}$ = 3,即点P(6,2)的“倾斜系数”k的值为3;
(2)①
∵点P(a,b)的“倾斜系数”k = 2,
∴$\frac{a}{b}$ = 2或$\frac{b}{a}$ = 2,即a = 2b或b = 2a,
∴a和b的数量关系为a = 2b或b = 2a;②由①知,a = 2b或b = 2a
∵a + b = 3,
∴$\begin{cases} a = 1 \\ b = 2 \end{cases}$或$\begin{cases} a = 2 \\ b = 1 \end{cases}$,
∴OP = $\sqrt{1^2 + 2^2}$ = $\sqrt{5}$;
(3)由题意知,满足条件的P点在直线y = $\sqrt{3}$x 和直线y = $\frac{\sqrt{3}}{3}$x之间,①当P点与D点重合时,且k = $\sqrt{3}$时,P点在直线y = $\sqrt{3}$x上,a有最小临界值,如图:此时a < b,连接OD,延长DA交x轴于E,此时$\frac{b}{a}$ = $\sqrt{3}$,则$\frac{a + 2}{a}$ = $\sqrt{3}$,解得a = $\sqrt{3}$ + 1,此时B点的坐标为($\sqrt{3}$ + 3,$\sqrt{3}$ + 1),且k = $\frac{\sqrt{3} + 3}{\sqrt{3} + 1}$ = $\sqrt{3}$
∴a > $\sqrt{3}$ + 1;
∴a > $\sqrt{3}$ + 3;综上所述,若点P的“倾斜系数”k < $\sqrt{3}$,则a的取值范围.
1. 观察以下几组勾股数,并寻找规律:
①3,4,5;②5,12,13;③7,24,25;
④9,40,41;…
请你写出有以上规律的第⑤组勾股数:
①3,4,5;②5,12,13;③7,24,25;
④9,40,41;…
请你写出有以上规律的第⑤组勾股数:
11,60,61
.
答案:
解:观察前四组勾股数:
①3,4,5,其中3=2×1+1,4=2×1×(1+1),5=2×1×(1+1)+1;
②5,12,13,其中5=2×2+1,12=2×2×(2+1),13=2×2×(2+1)+1;
③7,24,25,其中7=2×3+1,24=2×3×(3+1),25=2×3×(3+1)+1;
④9,40,41,其中9=2×4+1,40=2×4×(4+1),41=2×4×(4+1)+1。
则第⑤组勾股数中,第一个数为2×5+1=11,第二个数为2×5×(5+1)=60,第三个数为2×5×(5+1)+1=61。
11,60,61
①3,4,5,其中3=2×1+1,4=2×1×(1+1),5=2×1×(1+1)+1;
②5,12,13,其中5=2×2+1,12=2×2×(2+1),13=2×2×(2+1)+1;
③7,24,25,其中7=2×3+1,24=2×3×(3+1),25=2×3×(3+1)+1;
④9,40,41,其中9=2×4+1,40=2×4×(4+1),41=2×4×(4+1)+1。
则第⑤组勾股数中,第一个数为2×5+1=11,第二个数为2×5×(5+1)=60,第三个数为2×5×(5+1)+1=61。
11,60,61
2. 如图,$△AB_{1}A_{1},△A_{1}B_{2}A_{2},△A_{2}B_{3}A_{3}$,…是等边三角形,直线$y= \frac {\sqrt {3}}{3}x+2经过它们的顶点A,A_{1},A_{2},A_{3}$,…,点$B_{1},B_{2},B_{3}$,…在x轴上,则点$A_{2022}$的横坐标是______.

$(2^{2023}-2)\sqrt{3}$
答案:
解:设点$A$的坐标为$(x_0,y_0)$,$A_1$的坐标为$(x_1,y_1)$,$A_2$的坐标为$(x_2,y_2)$,…,$A_n$的坐标为$(x_n,y_n)$。
因为直线$y = \frac{\sqrt{3}}{3}x + 2$经过点$A$,令$x = 0$,则$y = 2$,所以$A(0,2)$,即$x_0 = 0$。
$\triangle AB_1A_1$是等边三角形,设$B_1(m,0)$,则$AB_1 = A_1B_1$,且$\angle AB_1O = 60^\circ$。
在$Rt\triangle AB_1O$中,$\tan60^\circ = \frac{AO}{OB_1} = \frac{2}{m}$,即$\sqrt{3} = \frac{2}{m}$,解得$m = \frac{2}{\sqrt{3}} = \frac{2\sqrt{3}}{3}$,所以$OB_1 = \frac{2\sqrt{3}}{3}$,$B_1\left(\frac{2\sqrt{3}}{3},0\right)$。
$A_1$的横坐标为$OB_1 + B_1A_1\cos60^\circ$,因为$AB_1 = \frac{AO}{\sin60^\circ} = \frac{2}{\frac{\sqrt{3}}{2}} = \frac{4\sqrt{3}}{3}$,所以$A_1B_1 = \frac{4\sqrt{3}}{3}$,则$A_1$的横坐标$x_1 = \frac{2\sqrt{3}}{3} + \frac{4\sqrt{3}}{3} × \frac{1}{2} = 2\sqrt{3}$。
同理,$A_1$在直线$y = \frac{\sqrt{3}}{3}x + 2$上,$y_1 = \frac{\sqrt{3}}{3} × 2\sqrt{3} + 2 = 4$。
$\triangle A_1B_2A_2$是等边三角形,设$B_2(n,0)$,$\tan60^\circ = \frac{y_1}{n - x_1} = \frac{4}{n - 2\sqrt{3}}$,解得$n - 2\sqrt{3} = \frac{4}{\sqrt{3}} = \frac{4\sqrt{3}}{3}$,$n = 2\sqrt{3} + \frac{4\sqrt{3}}{3} = \frac{10\sqrt{3}}{3}$。
$A_2$的横坐标$x_2 = n + A_1B_2 \cos60^\circ$,$A_1B_2 = \frac{y_1}{\sin60^\circ} = \frac{4}{\frac{\sqrt{3}}{2}} = \frac{8\sqrt{3}}{3}$,则$x_2 = \frac{10\sqrt{3}}{3} + \frac{8\sqrt{3}}{3} × \frac{1}{2} = 6\sqrt{3}$。
观察可得:$x_0 = 0 = (2^1 - 2)\sqrt{3}$,$x_1 = 2\sqrt{3} = (2^2 - 2)\sqrt{3}$,$x_2 = 6\sqrt{3} = (2^3 - 2)\sqrt{3}$,…,归纳得$x_n = (2^{n + 1} - 2)\sqrt{3}$。
当$n = 2022$时,$x_{2022} = (2^{2023} - 2)\sqrt{3}$。
$(2^{2023}-2)\sqrt{3}$
因为直线$y = \frac{\sqrt{3}}{3}x + 2$经过点$A$,令$x = 0$,则$y = 2$,所以$A(0,2)$,即$x_0 = 0$。
$\triangle AB_1A_1$是等边三角形,设$B_1(m,0)$,则$AB_1 = A_1B_1$,且$\angle AB_1O = 60^\circ$。
在$Rt\triangle AB_1O$中,$\tan60^\circ = \frac{AO}{OB_1} = \frac{2}{m}$,即$\sqrt{3} = \frac{2}{m}$,解得$m = \frac{2}{\sqrt{3}} = \frac{2\sqrt{3}}{3}$,所以$OB_1 = \frac{2\sqrt{3}}{3}$,$B_1\left(\frac{2\sqrt{3}}{3},0\right)$。
$A_1$的横坐标为$OB_1 + B_1A_1\cos60^\circ$,因为$AB_1 = \frac{AO}{\sin60^\circ} = \frac{2}{\frac{\sqrt{3}}{2}} = \frac{4\sqrt{3}}{3}$,所以$A_1B_1 = \frac{4\sqrt{3}}{3}$,则$A_1$的横坐标$x_1 = \frac{2\sqrt{3}}{3} + \frac{4\sqrt{3}}{3} × \frac{1}{2} = 2\sqrt{3}$。
同理,$A_1$在直线$y = \frac{\sqrt{3}}{3}x + 2$上,$y_1 = \frac{\sqrt{3}}{3} × 2\sqrt{3} + 2 = 4$。
$\triangle A_1B_2A_2$是等边三角形,设$B_2(n,0)$,$\tan60^\circ = \frac{y_1}{n - x_1} = \frac{4}{n - 2\sqrt{3}}$,解得$n - 2\sqrt{3} = \frac{4}{\sqrt{3}} = \frac{4\sqrt{3}}{3}$,$n = 2\sqrt{3} + \frac{4\sqrt{3}}{3} = \frac{10\sqrt{3}}{3}$。
$A_2$的横坐标$x_2 = n + A_1B_2 \cos60^\circ$,$A_1B_2 = \frac{y_1}{\sin60^\circ} = \frac{4}{\frac{\sqrt{3}}{2}} = \frac{8\sqrt{3}}{3}$,则$x_2 = \frac{10\sqrt{3}}{3} + \frac{8\sqrt{3}}{3} × \frac{1}{2} = 6\sqrt{3}$。
观察可得:$x_0 = 0 = (2^1 - 2)\sqrt{3}$,$x_1 = 2\sqrt{3} = (2^2 - 2)\sqrt{3}$,$x_2 = 6\sqrt{3} = (2^3 - 2)\sqrt{3}$,…,归纳得$x_n = (2^{n + 1} - 2)\sqrt{3}$。
当$n = 2022$时,$x_{2022} = (2^{2023} - 2)\sqrt{3}$。
$(2^{2023}-2)\sqrt{3}$
3. 观察下列各式:
①$\sqrt {1+\frac {1}{3}}= 2\sqrt {\frac {1}{3}}$;②$\sqrt {2+\frac {1}{4}}= 3\sqrt {\frac {1}{4}}$;
③$\sqrt {3+\frac {1}{5}}= 4\sqrt {\frac {1}{5}}$;…
(1)请观察规律,并写出第④个等式:
(2)请用含$n$(n为正整数)的式子写出你猜想的规律:
(3)请证明(2)中的结论.
①$\sqrt {1+\frac {1}{3}}= 2\sqrt {\frac {1}{3}}$;②$\sqrt {2+\frac {1}{4}}= 3\sqrt {\frac {1}{4}}$;
③$\sqrt {3+\frac {1}{5}}= 4\sqrt {\frac {1}{5}}$;…
(1)请观察规律,并写出第④个等式:
$\sqrt {4+\frac {1}{6}}=5\sqrt {\frac {1}{6}}$
;(2)请用含$n$(n为正整数)的式子写出你猜想的规律:
$\sqrt {n+\frac {1}{n+2}}=(n+1)\sqrt {\frac {1}{n+2}}$
(n为正整数);(3)请证明(2)中的结论.
证明:$\sqrt {n+\frac {1}{n+2}}=\sqrt {\frac {n^{2}+2n}{n+2}+\frac {1}{n+2}}=\sqrt {\frac {n^{2}+2n+1}{n+2}}=\sqrt {\frac {(n+1)^{2}}{n+2}}=(n+1)\sqrt {\frac {1}{n+2}}$.
答案:
解:
(1)$\sqrt {4+\frac {1}{6}}=5\sqrt {\frac {1}{6}}$.
(2)$\sqrt {n+\frac {1}{n+2}}=(n+1)\sqrt {\frac {1}{n+2}}$(n为正整数).
(3)证明:$\sqrt {n+\frac {1}{n+2}}=\sqrt {\frac {n^{2}+2n}{n+2}+\frac {1}{n+2}}=\sqrt {\frac {n^{2}+2n+1}{n+2}}=\sqrt {\frac {(n+1)^{2}}{n+2}}=(n+1)\sqrt {\frac {1}{n+2}}$.
(1)$\sqrt {4+\frac {1}{6}}=5\sqrt {\frac {1}{6}}$.
(2)$\sqrt {n+\frac {1}{n+2}}=(n+1)\sqrt {\frac {1}{n+2}}$(n为正整数).
(3)证明:$\sqrt {n+\frac {1}{n+2}}=\sqrt {\frac {n^{2}+2n}{n+2}+\frac {1}{n+2}}=\sqrt {\frac {n^{2}+2n+1}{n+2}}=\sqrt {\frac {(n+1)^{2}}{n+2}}=(n+1)\sqrt {\frac {1}{n+2}}$.
查看更多完整答案,请扫码查看