20. 求$x$的值:
(1)$4(x - 1)^{2} - 9 = 0$; (2)$\frac{2}{3}(x - 2)^{3} = 18$.
(1)$4(x - 1)^{2} - 9 = 0$; (2)$\frac{2}{3}(x - 2)^{3} = 18$.
答案:
(1) $x_{1}=\frac{5}{2},x_{2}=-\frac{1}{2}$
(2) $x=5$
(1) $x_{1}=\frac{5}{2},x_{2}=-\frac{1}{2}$
(2) $x=5$
21. 按要求填空:
(1)填表:

(2)① 已知$\sqrt{7.2} = 2.683$,求$\sqrt{720}$,$\sqrt{0.00072}$的值;
② 已知$\sqrt{0.0038} = 0.06164$,$\sqrt{x} = 61.64$,求$x$的值.
(1)填表:
(2)① 已知$\sqrt{7.2} = 2.683$,求$\sqrt{720}$,$\sqrt{0.00072}$的值;
② 已知$\sqrt{0.0038} = 0.06164$,$\sqrt{x} = 61.64$,求$x$的值.
答案:
解:
(1) $\sqrt{0.0004}=0.02,\sqrt{0.04}=0.2,\sqrt{4}=2,\sqrt{400}=20$;
(2) ① $\sqrt{720}=\sqrt{7.2\times100}=2.683\times10=26.83,\sqrt{0.00072}=\sqrt{7.2\times10^{-4}}=2.683\times10^{-2}=0.02683$. ② $\because \sqrt{0.0038}=0.06164,\sqrt{x}=61.64,61.64=0.06164\times10^{3},\therefore x=3800$.
(1) $\sqrt{0.0004}=0.02,\sqrt{0.04}=0.2,\sqrt{4}=2,\sqrt{400}=20$;
(2) ① $\sqrt{720}=\sqrt{7.2\times100}=2.683\times10=26.83,\sqrt{0.00072}=\sqrt{7.2\times10^{-4}}=2.683\times10^{-2}=0.02683$. ② $\because \sqrt{0.0038}=0.06164,\sqrt{x}=61.64,61.64=0.06164\times10^{3},\therefore x=3800$.
22. (1)已知$\sqrt{2x - 3y - 1} + |x - 2y + 2| = 0$,求$2x - \frac{7}{5}y$的平方根;
(2)已知正数$a的两个不同平方根分别是2x - 2和6 - 3x$,$a - 4b$的算术平方根是4.
① 求这个正数$a以及b$的值;
② 求$b^{3} + 3a - 17$的立方根.
(2)已知正数$a的两个不同平方根分别是2x - 2和6 - 3x$,$a - 4b$的算术平方根是4.
① 求这个正数$a以及b$的值;
② 求$b^{3} + 3a - 17$的立方根.
答案:
解:
(1) $\pm3$
(2) ① $\because$ 正数$a$的两个不同平方根分别是$2x-2$和$6-3x,\therefore 2x-2+6-3x=0$,解得$x=4.\therefore 2x-2=2\times4-2=6,6-3x=6-3\times4=-6.\because (\pm6)^{2}=36.\therefore a=36.\because a-4b$的算术平方根是$4,\therefore a-4b=4^{2}=16.\therefore$ 把$a=36$代入$a-4b=16$,得:$36-4b=16$,解得$b=5$; ② 由①可得$a=36,b=5$,把$a=36,b=5$代入$b^{3}+3a-17$,得:$5^{3}+3\times36-17=216,\therefore \sqrt[3]{b^{3}+3a-17}=\sqrt[3]{216}=6$.
(1) $\pm3$
(2) ① $\because$ 正数$a$的两个不同平方根分别是$2x-2$和$6-3x,\therefore 2x-2+6-3x=0$,解得$x=4.\therefore 2x-2=2\times4-2=6,6-3x=6-3\times4=-6.\because (\pm6)^{2}=36.\therefore a=36.\because a-4b$的算术平方根是$4,\therefore a-4b=4^{2}=16.\therefore$ 把$a=36$代入$a-4b=16$,得:$36-4b=16$,解得$b=5$; ② 由①可得$a=36,b=5$,把$a=36,b=5$代入$b^{3}+3a-17$,得:$5^{3}+3\times36-17=216,\therefore \sqrt[3]{b^{3}+3a-17}=\sqrt[3]{216}=6$.
查看更多完整答案,请扫码查看