19.已知下列9个数:① 0,② $-3\pi$,③ $\sqrt[3]{8}$,④ $\sqrt{100}$,⑤ $-\frac{22}{7}$,⑥ 2.$\dot{3}\dot{5}$,⑦ $-\sqrt{11}$,⑧ $\sqrt[3]{-5}$,⑨ 3.202002000⋯(两个2之间依次增加1个0)。请把这些数对应的编号,填入合适的集合中。
(1)有理数集合:\{
(2)无理数集合:\{
(3)负实数集合:\{
(1)有理数集合:\{
①③④⑤⑥
…\};(2)无理数集合:\{
②⑦⑧⑨
…\};(3)负实数集合:\{
②⑤⑦⑧
…\}。
答案:
(1)①③④⑤⑥ (2)②⑦⑧⑨ (3)②⑤⑦⑧
20.如图,已知$\angle A= \angle D$,有下列五个条件:① $AE = DE$;② $BE = CE$;③ $AB = DC$;④ $\angle ABC= \angle DCB$;⑤ $AC = BD$。能证明$\triangle ABC与\triangle DCB$全等的条件有几个?并选择其中一个进行证明。

答案:
①②④ 证明:①:在$\triangle AEB$与$\triangle DEC$中,$\because \angle A = \angle D$,$AE = DE$,$\angle AEB = \angle DEC$,$\therefore \triangle AEB \cong \triangle DEC$,$\therefore BE = CE$,$\therefore \angle ACB = \angle DBC$。在$\triangle ABC$与$\triangle DCB$中,$\because \angle A = \angle D$,$\angle EBC = \angle ECB$,$BC = CB$,$\therefore \triangle ABC \cong \triangle DCB$;②:$\because BE = CE$,$\angle EBC = \angle ECB$。在$\triangle ABC$与$\triangle DCB$中,$\because \angle A = \angle D$,$\angle EBC = \angle ECB$,$BC = CB$,$\therefore \triangle ABC \cong \triangle DCB$;④:在$\triangle ABC$与$\triangle DCB$中,$\because \angle A = \angle D$,$BC = CB$,$\angle ABC = \angle DCB$,$\therefore \triangle ABC \cong \triangle DCB$。
21.如图①,$CA = CB$,$CD = CE$,$\angle ACB= \angle DCE= \alpha$。
(1)求证:$BE = AD$;
(2)当$\alpha = 90^{\circ}$时,分别取AD、BE的中点P、Q,连接CP、CQ、PQ,如图②,判断$\triangle CPQ$的形状,并加以证明。

(1)求证:$BE = AD$;
(2)当$\alpha = 90^{\circ}$时,分别取AD、BE的中点P、Q,连接CP、CQ、PQ,如图②,判断$\triangle CPQ$的形状,并加以证明。
答案:
(1)证明:$\because \angle ACB = \angle DCE = \alpha$,$\therefore \angle ACD = \angle BCE$。在$\triangle ACD$和$\triangle BCE$中,$\begin{cases}CA = CB\\\angle ACD = \angle BCE\\CD = CE\end{cases}$,$\therefore \triangle ACD \cong \triangle BCE(SAS)$,$\therefore BE = AD$;(2)$\triangle CPQ$为等腰直角三角形。证明:由(1)可得,$BE = AD$,$\because AD$、$BE$的中点分别为点$P$、$Q$,$\therefore AP = BQ$。$\because \triangle ACD \cong \triangle BCE$,$\therefore \angle CAP = \angle CBQ$。在$\triangle ACP$和$\triangle BCQ$中,$\begin{cases}CA = CB\\\angle CAP = \angle CBQ\\AP = BQ\end{cases}$,$\therefore \triangle ACP \cong \triangle BCQ(SAS)$,$\therefore CP = CQ$,且$\angle ACP = \angle BCQ$。又$\because \angle ACP + \angle PCB = 90^{\circ}$,$\therefore \angle BCQ + \angle PCB = 90^{\circ}$,$\therefore \angle PCQ = 90^{\circ}$,$\therefore \triangle CPQ$为等腰直角三角形。
22.如图,在$\triangle ABC$中,AD是高,CE是中线,$DC = BE$,$DG\perp CE$于G。求证:
(1)G是CE的中点;
(2)$\angle B = 2\angle BCE$。

(1)G是CE的中点;
(2)$\angle B = 2\angle BCE$。
答案:
解:证明:(1)连接$DE$。$\because AD$是高,$CE$是中线,$\therefore DE = BE$。$\because DC = BE$,$\therefore DE = DC$。$\because DG \perp CE$,$\therefore G$是$CE$的中点;(2)$\because DE = BE$,$\therefore \angle B = \angle BDE$。$\because DE = DC$,$\therefore \angle DEC = \angle DCE$。$\because \angle BDE = \angle DEC + \angle DCE = 2\angle BCE$,$\therefore \angle B = 2\angle BCE$。
查看更多完整答案,请扫码查看