22. 如图,在$\triangle ABC$中,$\angle BAC = 90^{\circ}$,$AB = AC$,$EC\perp AC$,垂足为$C$,$AE交线段BC于F$,$D是AC$边上一点,连接$BD$,且$BD = AE$.
(1) 求证:$CE = AD$;
(2) $BD与AE$有怎样的位置关系? 证明你的结论;
(3) 当$\angle CFE = \angle ADB$时,求证:$BD平分\angle ABC$.

(1) 求证:$CE = AD$;
(2) $BD与AE$有怎样的位置关系? 证明你的结论;
(3) 当$\angle CFE = \angle ADB$时,求证:$BD平分\angle ABC$.
答案:
(1)证明:$\because \angle BAC = 90^{\circ}$,$EC \perp AC$,$\therefore \angle ACE = \angle BAD = 90^{\circ}$。在$\mathrm{Rt} \triangle ACE$和$\mathrm{Rt} \triangle BAD$中,$\begin{cases} AE = BD \\ CA = AB \end{cases}$,$\therefore \mathrm{Rt} \triangle ACE \cong \mathrm{Rt} \triangle BAD (\mathrm{HL})$。$\therefore CE = AD$;(2)$BD \perp AE$,证明:如图,$\because \triangle ACE \cong \triangle BAD$,$\therefore \angle CAE = \angle ABD$。$\therefore \angle AOD = \angle BAE + \angle ABD = \angle BAE + \angle CAE = \angle BAC = 90^{\circ}$。$\therefore AE \perp BD$;(3)证明:$\because \angle ADB + \angle DAE = \angle DAE + \angle BAE = 90^{\circ}$,$\therefore \angle ADB = \angle BAE$。$\because \angle CFE = \angle ADB$,$\angle CFE = \angle AFB$,$\therefore \angle AFB = \angle BAE$。$\therefore FB = AB$。$\because BD \perp AE$,$\therefore \angle ABD = \angle FBD$,即$BD$平分$\angle ABC$。
(1)证明:$\because \angle BAC = 90^{\circ}$,$EC \perp AC$,$\therefore \angle ACE = \angle BAD = 90^{\circ}$。在$\mathrm{Rt} \triangle ACE$和$\mathrm{Rt} \triangle BAD$中,$\begin{cases} AE = BD \\ CA = AB \end{cases}$,$\therefore \mathrm{Rt} \triangle ACE \cong \mathrm{Rt} \triangle BAD (\mathrm{HL})$。$\therefore CE = AD$;(2)$BD \perp AE$,证明:如图,$\because \triangle ACE \cong \triangle BAD$,$\therefore \angle CAE = \angle ABD$。$\therefore \angle AOD = \angle BAE + \angle ABD = \angle BAE + \angle CAE = \angle BAC = 90^{\circ}$。$\therefore AE \perp BD$;(3)证明:$\because \angle ADB + \angle DAE = \angle DAE + \angle BAE = 90^{\circ}$,$\therefore \angle ADB = \angle BAE$。$\because \angle CFE = \angle ADB$,$\angle CFE = \angle AFB$,$\therefore \angle AFB = \angle BAE$。$\therefore FB = AB$。$\because BD \perp AE$,$\therefore \angle ABD = \angle FBD$,即$BD$平分$\angle ABC$。
23. 在$\triangle ABC$中,$\angle B = 60^{\circ}$,$D是BC$上的一点,且$AD = AC$.
(1) 如图①,延长$BC到E$,使$CE = BD$,连接$AE$.求证:$AB = AE$;
(2) 如图②,在$AB上取一点F$,使$DF = DB$,$P为BC$延长线上的一点,连接$PA$、$PF$,若$PA = PF$,猜想$PC与BD$的数量关系并证明.

(1) 如图①,延长$BC到E$,使$CE = BD$,连接$AE$.求证:$AB = AE$;
(2) 如图②,在$AB上取一点F$,使$DF = DB$,$P为BC$延长线上的一点,连接$PA$、$PF$,若$PA = PF$,猜想$PC与BD$的数量关系并证明.
答案:
(1)证明:在$\triangle ACD$中,$AD = AC$,$\therefore \angle ADC = \angle ACD$。$\therefore \angle ADB = \angle ACE$。在$\triangle ADB$和$\triangle ACE$中,$\begin{cases} AD = AC \\ \angle ADB = \angle ACE \\ BD = CE \end{cases}$,$\therefore \triangle ADB \cong \triangle ACE (\mathrm{SAS})$。$\therefore AB = AE$;(2)解:$PC$与$BD$的数量关系为:$PC = 2BD$,理由如下:在线段$PC$上取一点$E$,使$CE = BD$,连接$AE$,如图所示:由(1)得:$\triangle ADB \cong \triangle ACE (\mathrm{SAS})$,$\therefore \angle AEC = \angle B = 60^{\circ}$。$\therefore \angle AEP = 120^{\circ}$。$\because DF = DB$,$\angle B = 60^{\circ}$,$\therefore \triangle DBF$是等边三角形。$\therefore \angle FDB = \angle DFB = 60^{\circ}$。$\therefore \angle PFD + \angle PFA = 120^{\circ}$,$\angle PDF = 120^{\circ}$。$\therefore \angle AEP = \angle PDF$。$\because PA = PF$,$\therefore \angle PAF = \angle PFA$。$\because \angle APE + \angle PAF = 120^{\circ}$,$\therefore \angle APE = \angle PFD$。在$\triangle APE$和$\triangle PFD$中,$\begin{cases} \angle AEP = \angle PDF \\ \angle APE = \angle PFD \\ PA = PF \end{cases}$,$\therefore \triangle APE \cong \triangle PFD$。$\therefore PE = DF = BD = CE$。$\therefore PC = 2BD$。
(1)证明:在$\triangle ACD$中,$AD = AC$,$\therefore \angle ADC = \angle ACD$。$\therefore \angle ADB = \angle ACE$。在$\triangle ADB$和$\triangle ACE$中,$\begin{cases} AD = AC \\ \angle ADB = \angle ACE \\ BD = CE \end{cases}$,$\therefore \triangle ADB \cong \triangle ACE (\mathrm{SAS})$。$\therefore AB = AE$;(2)解:$PC$与$BD$的数量关系为:$PC = 2BD$,理由如下:在线段$PC$上取一点$E$,使$CE = BD$,连接$AE$,如图所示:由(1)得:$\triangle ADB \cong \triangle ACE (\mathrm{SAS})$,$\therefore \angle AEC = \angle B = 60^{\circ}$。$\therefore \angle AEP = 120^{\circ}$。$\because DF = DB$,$\angle B = 60^{\circ}$,$\therefore \triangle DBF$是等边三角形。$\therefore \angle FDB = \angle DFB = 60^{\circ}$。$\therefore \angle PFD + \angle PFA = 120^{\circ}$,$\angle PDF = 120^{\circ}$。$\therefore \angle AEP = \angle PDF$。$\because PA = PF$,$\therefore \angle PAF = \angle PFA$。$\because \angle APE + \angle PAF = 120^{\circ}$,$\therefore \angle APE = \angle PFD$。在$\triangle APE$和$\triangle PFD$中,$\begin{cases} \angle AEP = \angle PDF \\ \angle APE = \angle PFD \\ PA = PF \end{cases}$,$\therefore \triangle APE \cong \triangle PFD$。$\therefore PE = DF = BD = CE$。$\therefore PC = 2BD$。
24. 在$\triangle ABC$中,$\angle A = 90^{\circ}$,$AB = AC$,点$D为BC$的中点.
(1) 如图①,若点$E$、$F分别为AB$、$AC$上的点,且$DE\perp DF$,求证:$BE = AF$;
(2) 若点$E$、$F分别为AB$、$CA$延长线上的点,且$DE\perp DF$,那么$BE = AF$吗? 请利用图②说明理由.

(1) 如图①,若点$E$、$F分别为AB$、$AC$上的点,且$DE\perp DF$,求证:$BE = AF$;
(2) 若点$E$、$F分别为AB$、$CA$延长线上的点,且$DE\perp DF$,那么$BE = AF$吗? 请利用图②说明理由.
答案:
(1)证明:连接$AD$,如图①所示。$\because \angle A = 90^{\circ}$,$AB = AC$,$\therefore \triangle ABC$为等腰直角三角形,$\angle EBD = 45^{\circ}$。$\because$点$D$为$BC$的中点,$\therefore AD = \frac{1}{2}BC = BD$,$\angle FAD = 45^{\circ}$。$\because \angle BDE + \angle EDA = 90^{\circ}$,$\angle EDA + \angle ADF = 90^{\circ}$,$\therefore \angle BDE = \angle ADF$。在$\triangle BDE$和$\triangle ADF$中,$\begin{cases} \angle EBD = \angle FAD \\ BD = AD \\ \angle BDE = \angle ADF \end{cases}$,$\therefore \triangle BDE \cong \triangle ADF (\mathrm{ASA})$。$\therefore BE = AF$;(2)$BE = AF$,理由:连接$AD$,如图②所示。$\because \angle ABD = \angle BAD = 45^{\circ}$,$\therefore \angle EBD = \angle FAD = 135^{\circ}$。$\because \angle EDB + \angle BDF = 90^{\circ}$,$\angle BDF + \angle FDA = 90^{\circ}$,$\therefore \angle EDB = \angle FDA$。在$\triangle EDB$和$\triangle FDA$中,$\begin{cases} \angle EBD = \angle FAD \\ BD = AD \\ \angle EBD = \angle FDA \end{cases}$,$\therefore \triangle EDB \cong \triangle FDA (\mathrm{ASA})$。$\therefore BE = AF$。
(1)证明:连接$AD$,如图①所示。$\because \angle A = 90^{\circ}$,$AB = AC$,$\therefore \triangle ABC$为等腰直角三角形,$\angle EBD = 45^{\circ}$。$\because$点$D$为$BC$的中点,$\therefore AD = \frac{1}{2}BC = BD$,$\angle FAD = 45^{\circ}$。$\because \angle BDE + \angle EDA = 90^{\circ}$,$\angle EDA + \angle ADF = 90^{\circ}$,$\therefore \angle BDE = \angle ADF$。在$\triangle BDE$和$\triangle ADF$中,$\begin{cases} \angle EBD = \angle FAD \\ BD = AD \\ \angle BDE = \angle ADF \end{cases}$,$\therefore \triangle BDE \cong \triangle ADF (\mathrm{ASA})$。$\therefore BE = AF$;(2)$BE = AF$,理由:连接$AD$,如图②所示。$\because \angle ABD = \angle BAD = 45^{\circ}$,$\therefore \angle EBD = \angle FAD = 135^{\circ}$。$\because \angle EDB + \angle BDF = 90^{\circ}$,$\angle BDF + \angle FDA = 90^{\circ}$,$\therefore \angle EDB = \angle FDA$。在$\triangle EDB$和$\triangle FDA$中,$\begin{cases} \angle EBD = \angle FAD \\ BD = AD \\ \angle EBD = \angle FDA \end{cases}$,$\therefore \triangle EDB \cong \triangle FDA (\mathrm{ASA})$。$\therefore BE = AF$。
查看更多完整答案,请扫码查看