科目:,来源:,题型:

3.的展开式中,含x的正整数次幂的项共有            (   )

   A.4项       B.3项       C.2项       D.1项

见理科卷4

点击展开完整题目
试题详情
科目:,来源:,题型:

2.已知                        (   )

   A.       B.-      C.       D.-

[思路点拨]本题涉及三角函数的有关公式.

[正确解答]由二倍角公式可知,,选B

[解后反思]教材已经给我们提供了一个好的问题情境,并通过“会话”、“协作”初步建构了二倍角公式的概念.我们完全有可能通过进一步的“会话”、协作”,深化对二倍角公式的意义建构,引导学生用学到的“活的思想”去诠释新教材中的新问题.如此去领会、贯彻新教材的构思.

点击展开完整题目
试题详情
科目:,来源:,题型:

1.设集合,则   (   )

   A.{1}       B.{1,2}     C.{2}       D.{0,1,2}

见理科卷1

点击展开完整题目
试题详情
科目:,来源:,题型:

22.(本小题满分14分)

如图,设抛物线的焦点为F,动点P在直线上运动,过P作抛物线C的两条切线PA、PB,且与抛物线C分别相切于A、B两点.

(1)求△APB的重心G的轨迹方程.

(2)证明∠PFA=∠PFB.

[思路点拨]本题涉及解析几何中直线与抛物线的若干知识.

[正确解答](1)设切点A、B坐标分别为

∴切线AP的方程为:

  切线BP的方程为:

解得P点的坐标为:

所以△APB的重心G的坐标为

所以,由点P在直线l上运动,从而得到重心G的轨迹方程为:

  (2)方法1:因为

由于P点在抛物线外,则

同理有

∴∠AFP=∠PFB.

方法2:①当所以P点坐标为,则P点到直线AF的距离为:

所以P点到直线BF的距离为:

所以d1=d2,即得∠AFP=∠PFB.

②当时,直线AF的方程:

直线BF的方程:

所以P点到直线AF的距离为:

,同理可得到P点到直线BF的距离,因此由d1=d2,可得到∠AFP=∠PFB.

[解后反思]解析几何主要的是点和曲线的位置关系、对称性,标准方程当中系数对位置的影响.圆锥曲线的定义和几何性质,解析几何的解答题往往是高档题,常常涉及的内容是求轨迹方程、直线和圆锥曲线的位置关系、对称、最值、范围.做这类题目一定要认真细心,提高自己的运算能力和思维能力.

点击展开完整题目
试题详情
科目:,来源:,题型:

21.(本小题满分12分)

已知数列

(1)证明

(2)求数列的通项公式an.

[思路点拨]本题考查数列的基础知识,考查运算能力和推理能力.第(1)问是证明递推关系,联想到用数学归纳法,第(2)问是计算题,也必须通过递推关系进行分析求解.

[正确解答](1)方法一 用数学归纳法证明:

1°当n=1时,

  ∴,命题正确.

2°假设n=k时有

  则

 

时命题正确.

由1°、2°知,对一切n∈N时有

方法二:用数学归纳法证明:

   1°当n=1时,

   2°假设n=k时有成立,

    令在[0,2]上单调递增,所以由假设

有:

也即当n=k+1时  成立,所以对一切

  (2)下面来求数列的通项:所以

,

又bn=-1,所以.

[解后反思]数列是高考考纲中明文规定必考内容之一,考纲规定学生必须理解数列的概念,了解数列通项公式的意义,了解递推公式是给出数列的一种方法,并能根据递推公式写出数列的前几项.当然数列与不等式的给合往往得高考数学的热点之一,也成为诸多省份的最后压轴大题,解决此类问题,必须有过硬的数学基础知识与过人的数学技巧,同时运用数学归纳法也是比较好的选择,不过在使用数学归纳法的过程中,一定要遵循数学归纳法的步骤.

点击展开完整题目
试题详情
科目:,来源:,题型:

20.(本小题满分12分)

如图,在长方体ABCD-A1B1C1D1,中,AD=AA1=1,AB=2,点E在棱AB上移动.

  (1)证明:D1E⊥A1D;

  (2)当E为AB的中点时,求点E到面ACD1的距离;

  (3)AE等于何值时,二面角D1-EC-D的大小为.

[思路点拨]本题涉及立体几何线面关系的有关知识,

[正确解答]解法(一)

(1)证明:∵AE⊥平面AA1DD1,A1D⊥AD1,∴A1D⊥D1E

(2)设点E到面ACD1的距离为h,在△ACD1中,AC=CD1=,AD1=

(3)过D作DH⊥CE于H,连D1H、DE,则D1H⊥CE,

  ∴∠DHD1为二面角D1-EC-D的平面角.

设AE=x,则BE=2-x

解法(二):以D为坐标原点,直线DA,DC,DD1分别为x,y,z轴,建立空间直角坐标系,设AE=x,则A1(1,0,1),D1(0,0,1),E(1,x,0),A(1,0,0)C(0,2,0)

(1)

(2)因为E为AB的中点,则E(1,1,0),从而

,设平面ACD1的法向量为,则

也即,得,从而,所以点E到平面AD1C的距离为

(3)设平面D1EC的法向量

,∴

  令b=1, ∴c=2,a=2-x

依题意

(不合,舍去), .

∴AE=时,二面角D1-EC-D的大小为.

[解后反思]立体几何的内容就是空间的判断、推理、证明、角度和距离、面积与体积的计算,这是立体几何的重点内容,本题实质上求解角度和距离,在求此类问题中,尽量要将这些量处于三角形中,最好是直角三角形,这样计算起来,比较简单,此外用向量也是一种比较好的方法,不过建系一定要恰当,这样坐标才比较好写出来.

点击展开完整题目
试题详情
科目:,来源:,题型:

19.(本小题满分12分)

A、B两位同学各有五张卡片,现以投掷均匀硬币的形式进行游戏,当出现正面朝上时A赢得B一张卡片,否则B赢得A一张卡片.规定掷硬币的次数达9次时,或在此前某人已赢得所有卡片时游戏终止.设表示游戏终止时掷硬币的次数.

(1)求的取值范围;

(2)求的数学期望E.

[思路点拨]本题考查涉及概率等若干知识,理解的含义是解决本题的关键.

[正确解答](1)设正面出现的次数为m,反面出现的次数为n,则

可得:

(2)

[解后反思]要想做对此类问题,要具备两个条件,首先要理解题目所涉及的知识,本题有一定的抽象性,如果你不理解题目,你就无从下手,第二要记牢这一类题目的做题步骤,做此类型题目,有时候步骤很重要的,严格按照书中例题的步骤完成是得到正确答案的保证.

点击展开完整题目
试题详情
科目:,来源:,题型:

18.(本小题满分12分)

已知向量.

是否存在实数若存在,则求出x的值;若不存在,则证明之.

[思路点拨]本题主要考查向量与三角,导数的综合题,正确化简f(x)是解该题的关健.

[正确解答]

    

[解后反思]本题是一道简单三角函数题,不过我们仍然在本题的解决过程中,发现这样一个问题,化简在解决数学过程中的重要地位,本题只要化简到位,那么在解决的过程会大大缩短,一切都变的简单起来,所以在解三角函数问题或其他的数学问题,能化简的,要尽量先化简.

点击展开完整题目
试题详情
科目:,来源:,题型:

17.(本小题满分12分)

已知函数(a,b为常数)且方程f(x)-x+12=0有两个实根为x1=3, x2=4.

  (1)求函数f(x)的解析式;

  (2)设k>1,解关于x的不等式;

[思路点拨]本题主要考查求函数的解析式及含参分式不等式的解法.

[正确解答](1)将

(2)不等式即为

①当

②当

.

[解后反思]解不等式的过程实质上就是转化的过程,分式不等式转化成整式不等式,解分式不等式一般情况下是移项,通分,然后转化成整式不等式,对于高次不等式,借助数轴法,则简单,快捷,另外,

点击展开完整题目
试题详情
科目:,来源:,题型:

16.以下同个关于圆锥曲线的命题中

    ①设A、B为两个定点,k为非零常数,,则动点P的轨迹为双曲线;

    ②设定圆C上一定点A作圆的动点弦AB,O为坐标原点,若则动点P的轨迹为椭圆;

    ③方程的两根可分别作为椭圆和双曲线的离心率;

    ④双曲线有相同的焦点.

    其中真命题的序号为         (写出所有真命题的序号)

[思路点拨]本题主要考查圆锥曲线的定义和性质主要由a,b,c,e的关系求得

[正确解答]双曲线的第一定义是:平面上的动点P到两定点是A,B之间的距离的差的绝对值为常数2a,且,那么P点的轨迹为双曲线,故①错,

,得P为弦AB的中点,故②错,

的两根为可知两根互与为倒数,且均为正,故③对,

的焦点坐标(),而的焦点坐标(),故④正确.

[解后反思]要牢牢掌握椭圆,双曲线的第一定义,同时还要掌握圆锥曲线的统一定义,弄清圆锥曲线中a,b,c,e的相互关系.

点击展开完整题目
试题详情
关闭