16.以下同个关于圆锥曲线的命题中

    ①设A、B为两个定点,k为非零常数,,则动点P的轨迹为双曲线;

    ②设定圆C上一定点A作圆的动点弦AB,O为坐标原点,若则动点P的轨迹为椭圆;

    ③方程的两根可分别作为椭圆和双曲线的离心率;

    ④双曲线有相同的焦点.

    其中真命题的序号为         (写出所有真命题的序号)

[思路点拨]本题主要考查圆锥曲线的定义和性质主要由a,b,c,e的关系求得

[正确解答]双曲线的第一定义是:平面上的动点P到两定点是A,B之间的距离的差的绝对值为常数2a,且,那么P点的轨迹为双曲线,故①错,

,得P为弦AB的中点,故②错,

的两根为可知两根互与为倒数,且均为正,故③对,

的焦点坐标(),而的焦点坐标(),故④正确.

[解后反思]要牢牢掌握椭圆,双曲线的第一定义,同时还要掌握圆锥曲线的统一定义,弄清圆锥曲线中a,b,c,e的相互关系.

  • 答案
关闭