科目:,来源:,题型:

19.★(本小题满分10分)已知数列{an}、{bn}都是无穷等差数列,其中a1=3,b1=2,b2a2a3的等差中项,且.求极限的值.

分析 首先需求出anbn的表达式,以确定所求极限的表达式,为此,关键在于求出两个数列的公差,“b2a2a3的等差中项”已给出一个等量关系,“anbn之比的极限为”又给出了另一个等量关系,故可考虑先设出公差用二元方程组求解.

解 设{an}、{bn}的公差分别为d1d2,

∵2b2=a2+a3,即2(2+d2)=(3+d1)+(3+2d1),

∴2d2-3d1=2.①   2分

d2=2d1,②    4分

联立①②解得d1=2,d2=4.

an=a1+(n-1)d1=3+(n-1)·2=2n+1,

bn=b1+(n-1)d2=2+(n-1)·4=4n-2.   6分

10分

点击展开完整题目
试题详情
科目:,来源:,题型:

18.(本小题满分10分)已知数列{an}、{bn},其中an=1+3+5+…+(2n+1),bn=2n+4(n≥5),试问是否存在这样的自然数n,使得anbn成立?

分析 对n赋值后,比较几对anbn的大小,可作出合理猜测,再用数学归纳法予以证明.

an=1+3+5+…+(2n+1)=(n+1)2,

n=5时,a5=36,b5=25+4=36,此时a5=b5;

n=6时, a6=49,b6=26+4=68,此时a6<b6;

n=7时,a7=64,b7=27+4=132,此时a7<b7;

n=8时,a8=81,b8=28+4=260,此时a8<b8.

猜想:当n≥6时,有an<bn.     3分

下面用数学归纳法证明上述猜想.

①当n=6时,显然不等式成立,∴n=6时,不等式an<bn成立;

②假设当n=k(k≥6)时,不等式成立,即ak<bk,也即(k+1)2<2k+4;当n=k+1时,bk+1=2k+1+4=2(2k+4)-4>2(k+1)2-4=2k2+4k-2,

而(2k2+4k-2)-(k+2)2=k2-6>0(∵k≥6,∴k2>6),

即2k2+4k-2>(k+2)2=[(k+1)+1]2.

由不等式的传递性,知bk+1>[(k+1)+1]2=ak+1.

∴当n=k+1时,不等式也成立.   8分

由①②可知,对一切n∈N,且n≥6,都有an<bn.

综上所述,可知只有当n=5时,an=bn;当n≥6时,anbn.因此存在使anbn成立的自然数n.

10分

点击展开完整题目
试题详情
科目:,来源:,题型:

17.(本小题满分8分)某校有教职工150人,为了丰富教工的课余生活,每天定时开放健身房和娱乐室.据调查统计,每次去健身房的人有10%下次去娱乐室,则在娱乐室的人有20%下次去健身房.请问,随着时间的推移,去健身房的人数能否趋于稳定?

分析 本题考查用数列的递推公式求通项及数列的极限.

解 设第n次去健身房的人数为an,去娱乐室的人数为bn,则an+bn=150,        2分

an=an-1+bn-1=an-1+(150-an-1)=an-1+30,

an=an-1+30.          4分

an-100=(an-1-100).于是an-100=(a1-100)·()n-1,即an=100+()n-1·(a1-100).  6分

an=100.故随着时间的推移,去健身房的人数稳定在100人左右.        8分

点击展开完整题目
试题详情
科目:,来源:,题型:

16.(本小题满分8分)设f(x)是一次函数,f(8)=15,且f(2),f(5),f(4)成等比数列,求.

分析 本题为函数、数列、极限的一道综合题.解题关键是先利用待定系数法确定f(x)的解析式,再求f(1)+f(2)+…+f(n),然后利用极限的运算法则求极限.

解 设f(x)=kx+b,

由条件,得8k+b=15,∴b=15-8k.

f (2), f (5), f (4)成等比数列,

∴(5k+b)2=(2k+b)(4k+b).    2分

b=15-8k代入,

得(15-3k)2=(15-6k)(15-4k).

解得k=4,k=0(舍),b=-17.

f(x)=4x-17.    4分

f(1)+f(2)+…+f(n)

=(4×1-17)+(4×2-17)+…+(4×n-17)

=4×(1+2+…+n)-17n

=4·-17n=2n2-15n.   6分

=   8分

点击展开完整题目
试题详情
科目:,来源:,题型:

15.(本小题满分8分)平面内有n个圆,其中每两个圆都相交于两点,并且每三个圆都不相交于同一点,求证:n个圆把平面分成f(n)=n2-n+2个部分.

分析 本题的关键在于如何应用归纳假设及已知条件分析当n=k+1时,第k+1个圆与其他k个圆的交点个数,做到有目的的变形.

证明 (1)当n=1时,一个圆把平面分成两部分,又12-1+2=2,故命题成立.

(2)假设n=k(k∈N*)时,命题成立,即满足题设条件的k个圆把平面分成f(k)=k2-k+2个部分.2分

那么当n=k+1时,设第k+1个圆为⊙O,由题意,它与k个圆中每个圆交于两点,又无三个圆交于同一点,于是它与其他k个圆交于2k个点,这些点把⊙O分成2k条弧,即f(k+1)=f(k)+2k=k2-k+2+2k=(k+1)2-(k+1)+2.   6分

这就是说,当n=k+1时,命题也成立.

综上可知,对一切n∈N*,命题都成立.   8分

点击展开完整题目
试题详情
科目:,来源:,题型:

14.已知,则a的值为      .

分析 本题考查f(x)的极限.因为把x=x0代入分式的分子,分子不为0.又因为f(x)存在,所以把x=x0代入分母,分母必不为0.故采用直接代入法即可求极限.

解 ∵

答案

点击展开完整题目
试题详情
科目:,来源:,题型:

13.★设函数x=0处连续,则实数a的值为      .

分析 本题考查函数的极限及函数f(x)在点x0处连续的定义.

解 ∵函数f(x)在点x0处连续,

又∵f(0)=a,∴a=.

答案

点击展开完整题目
试题详情
科目:,来源:,题型:

12.()=          .

分析 本题考查数列极限的运算.此题属于“∞-∞”型,应先分子有理化,再求极限.

(n-n+1)==

答案 0

点击展开完整题目
试题详情
科目:,来源:,题型:

11.用数学归纳法证明,假设n=k时,不等式成立,则当n=k+1时,应推证的目标不等式是        .

解析 因为自变量取n时,不等式的左边为n项和的形式,所以当n=k+1时应为k+1项的和,它们是,右边只需把n=k+1代入即可,它们是,故应推证的不等式是

答案

点击展开完整题目
试题详情
科目:,来源:,题型:

10. a的取值范围是(   )

A.a=1             B.a<-1或a

C.-1<a           D.a<-a>1

分析 本题考查极限qn=0,|q|<1.要求a的范围,可列a的不等式,要注意分式不等式的解法.

解法一 ∵()n=0,∴||<1

a<-1或a.

解法二 本题可利用特殊值代入法,当a=1时成立,排除C、D.再令a=,∵()n=0成立,∴排除A.

答案 B

第Ⅱ卷(非选择题共60分)

点击展开完整题目
试题详情
关闭