21.(本小题满分12分)
已知数列![]()
![]()
(1)证明![]()
(2)求数列
的通项公式an.
[思路点拨]本题考查数列的基础知识,考查运算能力和推理能力.第(1)问是证明递推关系,联想到用数学归纳法,第(2)问是计算题,也必须通过递推关系进行分析求解.
[正确解答](1)方法一 用数学归纳法证明:
1°当n=1时,![]()
∴
,命题正确.
2°假设n=k时有![]()
则![]()
![]()
而![]()
又![]()
∴
时命题正确.
由1°、2°知,对一切n∈N时有![]()
方法二:用数学归纳法证明:
1°当n=1时,
∴
;
2°假设n=k时有
成立,
令
,
在[0,2]上单调递增,所以由假设
有:
即![]()
也即当n=k+1时
成立,所以对一切![]()
(2)下面来求数列的通项:
所以
![]()
,
又bn=-1,所以
.
[解后反思]数列是高考考纲中明文规定必考内容之一,考纲规定学生必须理解数列的概念,了解数列通项公式的意义,了解递推公式是给出数列的一种方法,并能根据递推公式写出数列的前几项.当然数列与不等式的给合往往得高考数学的热点之一,也成为诸多省份的最后压轴大题,解决此类问题,必须有过硬的数学基础知识与过人的数学技巧,同时运用数学归纳法也是比较好的选择,不过在使用数学归纳法的过程中,一定要遵循数学归纳法的步骤.
- 答案