1. 计算:
(1)$(a^{2})^{2}\cdot (-2ab)$;
(2)$(a+9)(2a-1)$;
(3)$(-8x^{3}y^{2}+12x^{2}y-4x^{2})÷ (-2x)^{2}$;
(4)$3x(1-x)+4x(x-3)$;
(5)$4(m+1)^{2}-(2m+3)(2m-3)$;
(6)$(a-b+1)(a+b-1)$.
(1)$(a^{2})^{2}\cdot (-2ab)$;
(2)$(a+9)(2a-1)$;
(3)$(-8x^{3}y^{2}+12x^{2}y-4x^{2})÷ (-2x)^{2}$;
(4)$3x(1-x)+4x(x-3)$;
(5)$4(m+1)^{2}-(2m+3)(2m-3)$;
(6)$(a-b+1)(a+b-1)$.
答案:
(1)$-2a^{3}b$
(2)$2a^{2}+17a-9$
(3)$-2xy^{2}+3y-1$
(4)$x^{2}-9x$
(5)$8m+13$
(6)$a^{2}-b^{2}+2b-1$
(1)$-2a^{3}b$
(2)$2a^{2}+17a-9$
(3)$-2xy^{2}+3y-1$
(4)$x^{2}-9x$
(5)$8m+13$
(6)$a^{2}-b^{2}+2b-1$
2. 先化简再求值;
(1)$(x-1)(x+3)-(x-3)(x-5)$,其中$x= 2.9$.
(2)$[(x-2y)^{2}-(x+3y)(x-3y)+3y^{2}]÷ (-4y)$,其中$x= 2024$,$y= -\frac{1}{4}$.
(1)$(x-1)(x+3)-(x-3)(x-5)$,其中$x= 2.9$.
(2)$[(x-2y)^{2}-(x+3y)(x-3y)+3y^{2}]÷ (-4y)$,其中$x= 2024$,$y= -\frac{1}{4}$.
答案:
(1)$(x-1)(x+3)-(x-3)(x-5)$
$=x^{2}+3x-x-3-(x^{2}-5x-3x+15)$
$=x^{2}+3x-x-3-x^{2}+5x+3x-15$
$=10x-18$
当$x=2.9$时,原式$=29-18=11$.
(2)$[(x-2y)^{2}-(x+3y)(x-3y)+3y^{2}]÷(-4y)$
$=[x^{2}-4xy+4y^{2}-(x^{2}-9y^{2})+3y^{2}]÷(-4y)$
$=(x^{2}-4xy+4y^{2}-x^{2}+9y^{2}+3y^{2})÷(-4y)$
$=(-4xy+16y^{2})÷(-4y)$
$=x-4y$
当$x=2024,y=-\frac{1}{4}$时,原式$=2024-4×(-\frac{1}{4})=2024+1=2025$.
(1)$(x-1)(x+3)-(x-3)(x-5)$
$=x^{2}+3x-x-3-(x^{2}-5x-3x+15)$
$=x^{2}+3x-x-3-x^{2}+5x+3x-15$
$=10x-18$
当$x=2.9$时,原式$=29-18=11$.
(2)$[(x-2y)^{2}-(x+3y)(x-3y)+3y^{2}]÷(-4y)$
$=[x^{2}-4xy+4y^{2}-(x^{2}-9y^{2})+3y^{2}]÷(-4y)$
$=(x^{2}-4xy+4y^{2}-x^{2}+9y^{2}+3y^{2})÷(-4y)$
$=(-4xy+16y^{2})÷(-4y)$
$=x-4y$
当$x=2024,y=-\frac{1}{4}$时,原式$=2024-4×(-\frac{1}{4})=2024+1=2025$.
查看更多完整答案,请扫码查看