2025年暑假训练营学年总复习八年级数学北师大版希望出版社


注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2025年暑假训练营学年总复习八年级数学北师大版希望出版社 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。



《2025年暑假训练营学年总复习八年级数学北师大版希望出版社》

1. (宿迁中考)若实数m,n满足等式$|m-2|+\sqrt {n-4}= 0$,且m,n恰好是等腰$\triangle ABC$的两条边的边长,则$\triangle ABC$的周长是 (
B
)
A.12
B.10
C.8
D.6
答案: B
2. (成都中考)等腰三角形的一个底角为$50^{\circ }$,则它的顶角的度数为
$80^{\circ}$
.
答案: $80^{\circ}$
3. (邵阳中考)如图,在等腰$\triangle ABC$中,$AB= AC,$$∠A= 36^{\circ }$.将$\triangle ABC$中的$∠A$沿DE向下翻折,使点A落在点C处.若$AE= \sqrt {3}$,则BC的长是__
$\sqrt{3}$
__.

答案: $\sqrt{3}$
4. (桂林中考)如图,在$\triangle ABC$中,$∠A= 36^{\circ },AB= $$AC,BD平分∠ABC$,则图中等腰三角形的个数是__
3
__.
答案: 3
5. (北京中考)如图,在$\triangle ABC$中,$AB= AC,∠A= $$36^{\circ },BD平分∠ABC$交AC于点D.
求证:$AD= BC.$
证明:
$\because AB = AC$,$\angle A = 36^{\circ}$,$\therefore \angle ABC = \angle C = 72^{\circ}$。$\because BD$平分$\angle ABC$交$AC$于点$D$,$\therefore \angle ABD = \angle DBC = 36^{\circ}$,$\therefore \angle A = \angle ABD$,$\therefore AD = BD$。$\because \angle C = 72^{\circ}$,$\therefore \angle BDC = 72^{\circ}$,$\therefore \angle C = \angle BDC$,$\therefore BC = BD$,$\therefore AD = BC$。

答案: 证明:$\because AB = AC$,$\angle A = 36^{\circ}$,$\therefore \angle ABC = \angle C = 72^{\circ}$。$\because BD$平分$\angle ABC$交$AC$于点$D$,$\therefore \angle ABD = \angle DBC = 36^{\circ}$,$\therefore \angle A = \angle ABD$,$\therefore AD = BD$。$\because \angle C = 72^{\circ}$,$\therefore \angle BDC = 72^{\circ}$,$\therefore \angle C = \angle BDC$,$\therefore BC = BD$,$\therefore AD = BC$。
6. (内江中考)如图,$AD平分∠BAC,AD⊥BD$,垂足为点D,$DE// AC.$
求证:$\triangle BDE$是等腰三角形.
答案:
证明:如图。$\because DE// AC$,$\therefore \angle 1 = \angle 3$。$\because AD$平分$\angle BAC$,$\therefore \angle 1 = \angle 2$,$\therefore \angle 2 = \angle 3$。$\because AD\perp BD$,$\therefore \angle 2 + \angle B = 90^{\circ}$,$\angle 3 + \angle BDE = 90^{\circ}$,$\therefore \angle B = \angle BDE$,$\therefore BE = DE$,$\therefore \triangle BDE$是等腰三角形。
7. (陕西中考)如图,将两个大小、形状完全相同的$\triangle ABC和\triangle A'B'C'$拼在一起,其中点$A'$与点A重合,点$C'$落在边AB上,连接$B'C$.若$∠ACB= $$∠AC'B'= 90^{\circ },AC= BC= 3$,则$B'C$的长为 (
A
)


A.$3\sqrt {3}$
B.6
C.$3\sqrt {2}$
D.$\sqrt {21}$
答案: A
8. (襄阳中考)已知CD是$\triangle ABC$的边AB上的高,若$CD= \sqrt {3},AD= 1,AB= 2AC$,则BC的长为____
$2\sqrt{3}$或$2\sqrt{7}$
____.
答案: $2\sqrt{3}$或$2\sqrt{7}$
9. (东营中考)我国古代有这样一道数学问题:“枯木一根直立地上,高二丈,周三尺,有葛藤自根缠绕而上,五周而达其顶,问葛藤之长几何?”题意是:如图,把枯木看作一个圆柱体,因一丈是10尺,则该圆柱的高为20尺,底面周长为3尺,有葛藤自点A处缠绕而上,绕5周后其末端恰好到达点B处.则问题中葛藤的最短长度是__
25尺
__.
答案: 25尺

查看更多完整答案,请扫码查看

关闭