2025年七彩假期暑假作业八年级数学
注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2025年七彩假期暑假作业八年级数学 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。
1.(天津一模)下列等式成立的是 (
A.$\frac {1}{a}+\frac {2}{b}= \frac {3}{a+b}$
B.$\frac {2}{2a+b}= \frac {1}{a+b}$
C.$\frac {a}{-a+b}= -\frac {a}{a+b}$
D.$\frac {ab}{ab-b^{2}}= \frac {a}{a-b}$
D
)A.$\frac {1}{a}+\frac {2}{b}= \frac {3}{a+b}$
B.$\frac {2}{2a+b}= \frac {1}{a+b}$
C.$\frac {a}{-a+b}= -\frac {a}{a+b}$
D.$\frac {ab}{ab-b^{2}}= \frac {a}{a-b}$
答案:
D
2.(昌平区期末)把分式$\frac {b}{ab+3b}$约分得 (
A.$b+3$
B.$a+3$
C.$\frac {1}{b+3}$
D.$\frac {1}{a+3}$
D
)A.$b+3$
B.$a+3$
C.$\frac {1}{b+3}$
D.$\frac {1}{a+3}$
答案:
D
3. 等式$\frac {a^{2}+2a+1}{a^{2}-1}= \frac {a+1}{(\\)}$中的未知的分母是 (
A.$a^{2}+1$
B.$a^{2}+a+1$
C.$a^{2}+2a+1$
D.$a-1$
D
)A.$a^{2}+1$
B.$a^{2}+a+1$
C.$a^{2}+2a+1$
D.$a-1$
答案:
D
4. 填空:
(1) $\frac {a+b}{ab}= \frac {(
(2) $\frac {x^{2}+xy}{x^{2}}= \frac {x+y}{(
(3) $\frac {0.5m+0.3n}{0.7m-0.6n}= \frac {5m+3n}{(
(1) $\frac {a+b}{ab}= \frac {(
a^{2}+ab
)}{a^{2}b}$;(2) $\frac {x^{2}+xy}{x^{2}}= \frac {x+y}{(
x
)}$;(3) $\frac {0.5m+0.3n}{0.7m-0.6n}= \frac {5m+3n}{(
7m - 6n
)}$.
答案:
(1)$a^{2}+ab$
(2)$x$
(3)$7m - 6n$
(1)$a^{2}+ab$
(2)$x$
(3)$7m - 6n$
5. 化简:$\frac {2-a}{a^{2}-4a+4}= $
$\frac{1}{2 - a}$
.
答案:
$\frac{1}{2 - a}$
6. 通分:
(1) $\frac {1}{3xy^{3}},\frac {1}{2x^{2}y},\frac {1}{9x^{3}y}$;
(2) $\frac {1}{(a+b)^{2}},\frac {2}{-a+b},\frac {3}{a^{2}-b^{2}}$.
(1) $\frac {1}{3xy^{3}},\frac {1}{2x^{2}y},\frac {1}{9x^{3}y}$;
(2) $\frac {1}{(a+b)^{2}},\frac {2}{-a+b},\frac {3}{a^{2}-b^{2}}$.
答案:
解:
(1)$\because$最简公分母是$18x^{3}y^{3}$,
$\therefore \frac{1}{3xy^{2}} = \frac{6x^{2}}{18x^{3}y^{3}}$,$\frac{1}{2x^{2}y} = \frac{9xy^{2}}{18x^{3}y^{3}}$,$\frac{1}{9x^{3}y} = \frac{2y^{2}}{18x^{3}y^{3}}$;
(2)$\because$最简公分母是$(a - b)(a + b)^{2}$,
$\therefore \frac{1}{(a + b)^{2}} = \frac{a - b}{(a + b)^{2}(a - b)}$,$\frac{2}{-a + b} = -\frac{2(a + b)^{2}}{(a + b)^{2}(a - b)}$,
$\frac{3}{a^{2} - b^{2}} = \frac{3(a + b)}{(a + b)^{2}(a - b)}$。
(1)$\because$最简公分母是$18x^{3}y^{3}$,
$\therefore \frac{1}{3xy^{2}} = \frac{6x^{2}}{18x^{3}y^{3}}$,$\frac{1}{2x^{2}y} = \frac{9xy^{2}}{18x^{3}y^{3}}$,$\frac{1}{9x^{3}y} = \frac{2y^{2}}{18x^{3}y^{3}}$;
(2)$\because$最简公分母是$(a - b)(a + b)^{2}$,
$\therefore \frac{1}{(a + b)^{2}} = \frac{a - b}{(a + b)^{2}(a - b)}$,$\frac{2}{-a + b} = -\frac{2(a + b)^{2}}{(a + b)^{2}(a - b)}$,
$\frac{3}{a^{2} - b^{2}} = \frac{3(a + b)}{(a + b)^{2}(a - b)}$。
查看更多完整答案,请扫码查看