14. 如图,在$Rt\triangle ABC$中,$\angle ACB = 90^{\circ}$,$\frac{BC}{AC}=\frac{\sqrt{3}}{3}$,则下列结论中正确的是( )

A. $\sin A=\frac{\sqrt{3}}{2}$
B. $\sin B=\frac{1}{2}$
C. $\cos A=\frac{1}{2}$
D. $\tan B=\sqrt{3}$
A. $\sin A=\frac{\sqrt{3}}{2}$
B. $\sin B=\frac{1}{2}$
C. $\cos A=\frac{1}{2}$
D. $\tan B=\sqrt{3}$
答案:
D $\because\frac{BC}{AC}=\tan A=\frac{\sqrt{3}}{3}$,$\therefore\angle A = 30^{\circ}$,$\therefore\angle B = 60^{\circ}$,$\therefore\sin A=\sin30^{\circ}=\frac{1}{2}$,故A错误;$\therefore\sin B=\sin60^{\circ}=\frac{\sqrt{3}}{2}$,故B错误;$\therefore\cos A=\cos30^{\circ}=\frac{\sqrt{3}}{2}$,故C错误;$\therefore\tan B=\tan60^{\circ}=\sqrt{3}$,故D正确。
15. 已知$\alpha$是锐角,$\sin\alpha=\cos60^{\circ}$,则$\alpha$等于( )
A. $30^{\circ}$
B. $45^{\circ}$
C. $60^{\circ}$
D. 不能确定
A. $30^{\circ}$
B. $45^{\circ}$
C. $60^{\circ}$
D. 不能确定
答案:
A $\because\sin\alpha=\cos60^{\circ}=\frac{1}{2}$,$\therefore\alpha = 30^{\circ}$。
16. $\triangle ABC$中,$\angle A,\angle B$均为锐角,且$(\tan B - \sqrt{3})(2\sin A - \sqrt{3}) = 0$,则$\triangle ABC$一定是( )
A. 等腰三角形
B. 等边三角形
C. 直角三角形
D. 有一个角是$60^{\circ}$的三角形
A. 等腰三角形
B. 等边三角形
C. 直角三角形
D. 有一个角是$60^{\circ}$的三角形
答案:
D $\because\triangle ABC$中,$\angle A$,$\angle B$均为锐角,且$(\tan B-\sqrt{3})(2\sin A-\sqrt{3}) = 0$,$\therefore\tan B-\sqrt{3}=0$,或$2\sin A-\sqrt{3}=0$,即$\tan B=\sqrt{3}$,或$\sin A=\frac{\sqrt{3}}{2}$。$\therefore\angle B = 60^{\circ}$,或$\angle A = 60^{\circ}$。$\therefore\triangle ABC$是有一个角是$60^{\circ}$的三角形。
17. 在$Rt\triangle ABC$中,$\angle C = 90^{\circ}$,$AB = 2$,$BC = \sqrt{3}$,则$\sin\frac{A}{2}=$_______.
答案:
$\frac{1}{2}$ $\because\sin A=\frac{BC}{AB}=\frac{\sqrt{3}}{2}$,$\therefore\angle A = 60^{\circ}$,$\therefore\sin\frac{A}{2}=\sin30^{\circ}=\frac{1}{2}$。
18. 用计算器比较大小:$\frac{\sqrt{5}-1}{2}$_______$\sin37.5^{\circ}$.
答案:
$>$ $\because\frac{\sqrt{5}-1}{2}\approx0.6180$,$\sin37.5^{\circ}\approx0.6088$,$\therefore\frac{\sqrt{5}-1}{2}>\sin37.5^{\circ}$。
19. 在$Rt\triangle ABC$中,$\angle C = 90^{\circ}$,如果$3BC = \sqrt{3}AC$,那么$\sin A=$_______.
答案:
$\frac{1}{2}$ $\because\angle C = 90^{\circ}$,$3BC=\sqrt{3}AC$,$\therefore\tan A=\frac{BC}{AC}=\frac{\sqrt{3}}{3}$,$\therefore\angle A = 30^{\circ}$,$\therefore\sin A=\sin30^{\circ}=\frac{1}{2}$。
20. 若$\alpha,\beta$均为锐角,且$\vert\sin\alpha - \frac{1}{2}\vert+(\sqrt{3}-\tan\beta)^{2}=0$,则$\alpha+\beta=$_______.
答案:
$90^{\circ}$ $\because|\sin\alpha-\frac{1}{2}|+(\sqrt{3}-\tan\beta)^{2}=0$,$\therefore\sin\alpha-\frac{1}{2}=0$,$\sqrt{3}-\tan\beta=0$,$\therefore\sin\alpha=\frac{1}{2}$,$\tan\beta=\sqrt{3}$,$\therefore\alpha = 30^{\circ}$,$\beta = 60^{\circ}$,$\therefore\alpha+\beta = 90^{\circ}$。
21. 规定:$\sin(-x)=-\sin x,\cos(-x)=\cos x,\sin(x + y)=\sin x\cos y+\cos x\sin y$. 据此判断下列等式成立的是___________(填序号).
①$\cos(-60^{\circ})=-\cos60^{\circ}=\frac{1}{2}$;
②$\sin75^{\circ}=\sin(30^{\circ}+45^{\circ})=\sin30^{\circ}\cos45^{\circ}+\cos30^{\circ}\sin45^{\circ}=\frac{\sqrt{2}+\sqrt{6}}{4}$;
③$\sin2x=\sin(x + x)=\sin x\cos x+\cos x\sin x = 2\sin x\cos x$;
④$\sin(x - y)=\sin x\cos y-\cos x\sin y$.
①$\cos(-60^{\circ})=-\cos60^{\circ}=\frac{1}{2}$;
②$\sin75^{\circ}=\sin(30^{\circ}+45^{\circ})=\sin30^{\circ}\cos45^{\circ}+\cos30^{\circ}\sin45^{\circ}=\frac{\sqrt{2}+\sqrt{6}}{4}$;
③$\sin2x=\sin(x + x)=\sin x\cos x+\cos x\sin x = 2\sin x\cos x$;
④$\sin(x - y)=\sin x\cos y-\cos x\sin y$.
答案:
②③④ $\cos(-60^{\circ})=\cos60^{\circ}=\frac{1}{2}$,故①不成立;
$\sin75^{\circ}=\sin(30^{\circ}+45^{\circ})=\sin30^{\circ}\cos45^{\circ}+\cos30^{\circ}\sin45^{\circ}=\frac{\sqrt{6}+\sqrt{2}}{4}$,故②成立;
$\sin2x=\sin(x + x)=\sin x\cos x+\cos x\sin x = 2\sin x\cos x$,故③成立;
$\sin(x - y)=\sin[x+(-y)]=\sin x\cos(-y)+\cos x\sin(-y)=\sin x\cos y-\cos x\sin y$,故④成立。
22. 计算:
(1)$2\sin60^{\circ}\tan45^{\circ}+4\cos^{2}30^{\circ}-\tan60^{\circ}$;
(2)$\vert2-\tan60^{\circ}\vert-(\pi - 3.14)^{0}+(-\frac{1}{2})^{-2}+\frac{\sqrt{12}}{2}$;
(3)$\frac{\sqrt{2}}{4}\sin45^{\circ}+\cos^{2}30^{\circ}-\frac{1}{2\tan60^{\circ}}+2\sin60^{\circ}$;
(4)$\frac{\sin45^{\circ}+\cos30^{\circ}}{3 - 2\cos60^{\circ}}-\sin60^{\circ}\times(1-\sin30^{\circ})$.
(1)$2\sin60^{\circ}\tan45^{\circ}+4\cos^{2}30^{\circ}-\tan60^{\circ}$;
(2)$\vert2-\tan60^{\circ}\vert-(\pi - 3.14)^{0}+(-\frac{1}{2})^{-2}+\frac{\sqrt{12}}{2}$;
(3)$\frac{\sqrt{2}}{4}\sin45^{\circ}+\cos^{2}30^{\circ}-\frac{1}{2\tan60^{\circ}}+2\sin60^{\circ}$;
(4)$\frac{\sin45^{\circ}+\cos30^{\circ}}{3 - 2\cos60^{\circ}}-\sin60^{\circ}\times(1-\sin30^{\circ})$.
答案:
解:
(1)原式$=2\times\frac{\sqrt{3}}{2}\times1 + 4\times(\frac{\sqrt{3}}{2})^{2}-\sqrt{3}=\sqrt{3}+3-\sqrt{3}=3$;
(2)原式$=|2-\sqrt{3}|-1 + 4+\sqrt{3}=2-\sqrt{3}+3+\sqrt{3}=5$;
(3)原式$=\frac{\sqrt{2}}{4}\times\frac{\sqrt{2}}{2}+(\frac{\sqrt{3}}{2})^{2}-\frac{1}{2\times\sqrt{3}}+2\times\frac{\sqrt{3}}{2}=\frac{1}{4}+\frac{3}{4}-\frac{\sqrt{3}}{6}+\sqrt{3}=1+\frac{5\sqrt{3}}{6}$;
(4)原式$=\frac{\frac{\sqrt{2}}{2}+\frac{\sqrt{3}}{2}}{3 - 2\times\frac{1}{2}}-\frac{\sqrt{3}}{2}\times(1-\frac{1}{2})=\frac{\sqrt{2}+\sqrt{3}}{4}-\frac{\sqrt{3}}{2}\times\frac{1}{2}=\frac{\sqrt{2}}{4}$。
(1)原式$=2\times\frac{\sqrt{3}}{2}\times1 + 4\times(\frac{\sqrt{3}}{2})^{2}-\sqrt{3}=\sqrt{3}+3-\sqrt{3}=3$;
(2)原式$=|2-\sqrt{3}|-1 + 4+\sqrt{3}=2-\sqrt{3}+3+\sqrt{3}=5$;
(3)原式$=\frac{\sqrt{2}}{4}\times\frac{\sqrt{2}}{2}+(\frac{\sqrt{3}}{2})^{2}-\frac{1}{2\times\sqrt{3}}+2\times\frac{\sqrt{3}}{2}=\frac{1}{4}+\frac{3}{4}-\frac{\sqrt{3}}{6}+\sqrt{3}=1+\frac{5\sqrt{3}}{6}$;
(4)原式$=\frac{\frac{\sqrt{2}}{2}+\frac{\sqrt{3}}{2}}{3 - 2\times\frac{1}{2}}-\frac{\sqrt{3}}{2}\times(1-\frac{1}{2})=\frac{\sqrt{2}+\sqrt{3}}{4}-\frac{\sqrt{3}}{2}\times\frac{1}{2}=\frac{\sqrt{2}}{4}$。
查看更多完整答案,请扫码查看