16. (6 分)利用因式分解计算:
$3.68 × 15.7 - 31.4 + 15.7 × 0.32$.
$3.68 × 15.7 - 31.4 + 15.7 × 0.32$.
答案:
16.解:原式$=15.7×(3.68+0.32)-31.4$
$=15.7×4-15.7×2$
$=15.7×(4-2)$
$=15.7×2=31.4$.
$=15.7×4-15.7×2$
$=15.7×(4-2)$
$=15.7×2=31.4$.
17. (12 分)分解因式:
(1) $16m^{3} - mn^{2}$;
(2) $25m^{2} - 10mn + n^{2}$;
(3) $9a^{2}(x - y) + 4b^{2}(y - x)$;
(4) $(y^{2} + 9)^{2} - 36y^{2}$.
(1) $16m^{3} - mn^{2}$;
(2) $25m^{2} - 10mn + n^{2}$;
(3) $9a^{2}(x - y) + 4b^{2}(y - x)$;
(4) $(y^{2} + 9)^{2} - 36y^{2}$.
答案:
17.解:
(1)原式$=m(4m-n)(4m+n)$.
(2)原式$=(5m-n)^{2}$.
(3)原式$=(x-y)(3a-2b)(3a+2b)$.
(4)原式$=(y-3)^{2}(y+3)^{2}$.
(1)原式$=m(4m-n)(4m+n)$.
(2)原式$=(5m-n)^{2}$.
(3)原式$=(x-y)(3a-2b)(3a+2b)$.
(4)原式$=(y-3)^{2}(y+3)^{2}$.
18. (8 分)某个圆形盘子如图①所示,其外圆半径是 $R$ cm,内圆半径是 $r$ cm.现在要给盘子环形部分上釉(图②阴影部分),如果 $R = 10.25$, $r = 8.25$,请求出阴影部分的面积.(结果保留 $\pi$)

答案:
18.解:阴影部分的面积为$37\pi\ cm^{2}$.
19. (8 分)先分解因式,再求值: $(4x + 5y)^{2} - (3x - 2y)^{2}$,其中 $x = \frac{1}{7}$, $y = 1$.
答案:
解:
根据平方差公式$a^2 - b^2=(a + b)(a - b)$,对$(4x + 5y)^{2} - (3x - 2y)^{2}$分解因式:
$\begin{aligned}&(4x + 5y)^{2} - (3x - 2y)^{2}\\=&[(4x + 5y)+(3x - 2y)][(4x + 5y)-(3x - 2y)]\\=&(4x + 5y + 3x - 2y)(4x + 5y - 3x + 2y)\\=&(7x + 3y)(x + 7y)\end{aligned}$
当$x=\frac{1}{7}$,$y = 1$时:
$\begin{aligned}&(7×\frac{1}{7}+3×1)(\frac{1}{7}+7×1)\\=&(1 + 3)(\frac{1}{7}+7)\\=&4×\frac{50}{7}\\=&\frac{200}{7}\end{aligned}$
所以,原式分解因式后为$(7x + 3y)(x + 7y)$,值为$\frac{200}{7}$。
根据平方差公式$a^2 - b^2=(a + b)(a - b)$,对$(4x + 5y)^{2} - (3x - 2y)^{2}$分解因式:
$\begin{aligned}&(4x + 5y)^{2} - (3x - 2y)^{2}\\=&[(4x + 5y)+(3x - 2y)][(4x + 5y)-(3x - 2y)]\\=&(4x + 5y + 3x - 2y)(4x + 5y - 3x + 2y)\\=&(7x + 3y)(x + 7y)\end{aligned}$
当$x=\frac{1}{7}$,$y = 1$时:
$\begin{aligned}&(7×\frac{1}{7}+3×1)(\frac{1}{7}+7×1)\\=&(1 + 3)(\frac{1}{7}+7)\\=&4×\frac{50}{7}\\=&\frac{200}{7}\end{aligned}$
所以,原式分解因式后为$(7x + 3y)(x + 7y)$,值为$\frac{200}{7}$。
查看更多完整答案,请扫码查看