2025年超越训练八年级数学上册人教版四川专版


注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2025年超越训练八年级数学上册人教版四川专版 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。



《2025年超越训练八年级数学上册人教版四川专版》

11. 如图,$\triangle ABC\cong\triangle DEC$,点$E$在线段$AB$上,$\angle B = 75^{\circ}$,则$\angle ACD$的度数是
$30^{\circ}$
.
答案: 11.$30^{\circ}$
12. 如图,$BC$,$AE$是锐角三角形$ABF$的高,相交于点$D$.若$AD = BF$,$AF = 7$,$CF = 2$,则$BD =$
3
.
答案: 12.3
13. 如图,在$\triangle ABC$中,$\angle C = 90^{\circ}$,点$D$在$AB$上,且$BD = BC$,过$D$作$DE\perp AB$交$AC$于点$E$.若$\triangle ABC$的周长为$36$,$\triangle ADE$的周长为$12$,则$BC$的长为
12
.
答案: 13.12
14. 如图,在平面直角坐标系中,$\triangle ABC$的顶点$A(3,0)$,$B(0,-1)$,点$C$在第四象限,且$AB = BC$,$\angle ABC = 90^{\circ}$,则点$C$的坐标是
(1,-4)
.
答案: 14.$(1,-4)$
15. 如图,点$A$,$C$,$D$在同一条直线上,$BC$与$AF$交于点$E$,$AF = AC$,$AD = BC$,$AE = EC$.
(1)求证:$FD = AB$;
(2)若$\angle B = 50^{\circ}$,$\angle F = 110^{\circ}$,求$\angle BCD$的度数.
答案: 15.
(1)证明:$\because AE = EC$,$\therefore \angle EAC = \angle ECA$.在$\triangle AFD$和$\triangle CAB$
中,$\begin{cases}AF = CA, \\\angle FAD = \angle ACB, \\AD = CB,\end{cases}$ $\therefore \triangle AFD \cong \triangle CAB(SAS)$,$\therefore FD =CB$.
(2)解:$\because \triangle AFD \cong \triangle CAB$,$\therefore \angle BAC = \angle F = 110^{\circ}$,
$\therefore \angle BCD = \angle B + \angle BAC = 160^{\circ}$.
16. 如图,在$\triangle ABC$中,$\angle B = \angle C$,$BE = CD$,$BD = CF$.请探究$\angle EDF$与$\angle A$之间的数量关系.
答案: 16.解:在$\triangle BED$和$\triangle CDF$中,$\begin{cases}BE = CD, \\\angle B = \angle C, \\BD = CF,\end{cases}$
(SAS),$\therefore \angle BED = \angle CDF$.$\because \angle EDF + \angle CDF = \angle B +\angle BED$,$\therefore \angle B = \angle EDF$,$\therefore 2\angle EDF + \angle A = 180^{\circ}$.
17. 如图,在$\triangle ABC$中,$BE$,$CF$分别是边$AC$,$AB$上的高,在$BE$上截取$BD = AC$,在$CF$的延长线上截取$CG = AB$,连接$AD$,$AG$.试探索$AG$与$AD$的关系,并说明理由.
答案: 17.解:$AG = AD$且$AG \perp AD$.理由如下:$\because BE,CF$分别是边$AC$,
$AB$上的高,$\therefore \angle ACG + \angle CAB = 90^{\circ}$,$\angle ABE + \angle CAB = 90^{\circ}$,
$\therefore \angle ACG = \angle ABE$. 在$\triangle AGC$和$\triangle DAB$ 中,
$\begin{cases}AC = DB, \\\angle ACG = \angle DBA,\end{cases}$ $\therefore \triangle AGC \cong \triangle DAB(SAS)$,$\therefore AG = AD$,
$\angle G = \angle BAD$.又$\angle G + \angle GAF = 90^{\circ}$,$\therefore \angle BAD + \angle GAF =90^{\circ}$,即$\angle GAD = 90^{\circ}$,$\therefore AG \perp AD$.

查看更多完整答案,请扫码查看

关闭