12. 如图,在$\triangle ABC$中,$AB=AC$,$∠BAC=120^{\circ},BM⊥AC$,交CA的延长线于点M,D是BC上一点,$DE⊥AB$于点E,$DF⊥AC$于点F.若$BM=5$,则$DE+DF=$

5
.
答案:
12.5
13. 如图,在$\triangle ABC$中,$∠ABC=3∠C$,$∠1=∠2,BE⊥AE,AB=5,BE=3$,则$AC=$


11
.
答案:
13.11
14. 如图,在等边三角形ABC中,M是边BC的中点,$AB=8$,射线$CD⊥BC$于点C,P是射线CD上一动点,N是线段AB上一动点.当$PM+PN$的值最小时,$AN$的长为
2
.
答案:
14.2
15. 如图,在等边三角形ABC中,D,E,F分别是边BC,AB,AC上的点,且$∠ADE=∠ADF=60^{\circ}$.求证:$BE=CF$.

答案:
15.证明:如图,过点A作AM⊥DE于点M,AN⊥DF于点N.
∵∠ADE = ∠ADF = 60°,
∴DA平分∠MDN,
∴AM = AN.
∵△ABC是等边三角形,
∴AB = AC,∠BAC = 60°,
∴∠EDF + ∠EAF = 120° + 60° = 180°.
又∠EDF + ∠MAN = 180°,
∴∠EAF = ∠MAN,
∴∠EAF - ∠MAF = ∠MAN - ∠MAF,即∠EAM = ∠FAN.在△AEM和△AFN中,$\begin{cases} ∠EAM = ∠FAN, \\ AM = AN, \\ ∠AME = ∠N, \end{cases}$
∴△AEM≌△AFN(ASA),
∴AE = AF,
∴AB - AE = AC - AF,即BE = CF.
15.证明:如图,过点A作AM⊥DE于点M,AN⊥DF于点N.
∵∠ADE = ∠ADF = 60°,
∴DA平分∠MDN,
∴AM = AN.
∵△ABC是等边三角形,
∴AB = AC,∠BAC = 60°,
∴∠EDF + ∠EAF = 120° + 60° = 180°.
又∠EDF + ∠MAN = 180°,
∴∠EAF = ∠MAN,
∴∠EAF - ∠MAF = ∠MAN - ∠MAF,即∠EAM = ∠FAN.在△AEM和△AFN中,$\begin{cases} ∠EAM = ∠FAN, \\ AM = AN, \\ ∠AME = ∠N, \end{cases}$
∴△AEM≌△AFN(ASA),
∴AE = AF,
∴AB - AE = AC - AF,即BE = CF.
16. 如图,在$\triangle ABC$中,$AB=AC$,$∠BAC=30^{\circ}$,D为BC上一点,以AD为腰作等腰三角形ADE,且$AD=AE,∠DAE=30^{\circ}$,连接CE.若$BD=2,CD=5$,求$\triangle DCE$的面积.

答案:
16.解:如图,过点E作EM⊥BC交BC的延长线于点M.
∵AB = AC,∠BAC = 30°,
∴∠B = ∠ACD = 75°.
∵∠BAC = ∠DAE = 30°,
∴∠BAD = ∠CAE.在△ABD和△ACE中,$\begin{cases} AB = AC, \\ ∠BAD = ∠CAE, \\ AD = AE, \end{cases}$
∴△ABD≌△ACE(SAS),
∴∠ACE = ∠B = 75°,CE = BD = 2,
∴∠BCE = ∠ACE + ∠ACD = 150°,
∴∠ECM = 180° - ∠BCE = 30°,
∴EM = $\frac{1}{2}$CE = 1,
∴$S_{△DCE} = \frac{1}{2}CD·EM = \frac{5}{2}$.
16.解:如图,过点E作EM⊥BC交BC的延长线于点M.
∵AB = AC,∠BAC = 30°,
∴∠B = ∠ACD = 75°.
∵∠BAC = ∠DAE = 30°,
∴∠BAD = ∠CAE.在△ABD和△ACE中,$\begin{cases} AB = AC, \\ ∠BAD = ∠CAE, \\ AD = AE, \end{cases}$
∴△ABD≌△ACE(SAS),
∴∠ACE = ∠B = 75°,CE = BD = 2,
∴∠BCE = ∠ACE + ∠ACD = 150°,
∴∠ECM = 180° - ∠BCE = 30°,
∴EM = $\frac{1}{2}$CE = 1,
∴$S_{△DCE} = \frac{1}{2}CD·EM = \frac{5}{2}$.
17. 如图,在$\triangle ABC$中,D为BC的中点,$∠CAD=2∠BAD,CE⊥AD$于点E,求$\frac{DE}{AC}$的值.

答案:
17.解:如图,延长DA至点M,使得AM = AC,连接CM,过点B作BN⊥AD交AD的延长线于点N.
∵D为BC的中点,
∴BD = CD.在△BND和△CED中,$\begin{cases} ∠N = ∠CED, \\ ∠BDN = ∠CDE, \\ BD = CD, \end{cases}$
∴△BND≌△CED(AAS),
∴BN = CE,DN = DE,
∴EN = 2DE.
∵AM = AC,
∴∠M = ∠ACM,∠CAD = ∠M + ∠ACM = 2∠M.
∵∠CAD = 2∠BAD,
∴∠M = ∠BAD = ∠BAN.在△ABN和△MCE中,$\begin{cases} ∠BAN = ∠M, \\ ∠N = ∠MEC, \\ BN = CE, \end{cases}$
∴△ABN≌△MCE(AAS),
∴AN = ME,
∴AN - AE = ME - AE,即EN = AM = AC,
∴2DE = AC,即$\frac{DE}{AC} = \frac{1}{2}$.
17.解:如图,延长DA至点M,使得AM = AC,连接CM,过点B作BN⊥AD交AD的延长线于点N.
∵D为BC的中点,
∴BD = CD.在△BND和△CED中,$\begin{cases} ∠N = ∠CED, \\ ∠BDN = ∠CDE, \\ BD = CD, \end{cases}$
∴△BND≌△CED(AAS),
∴BN = CE,DN = DE,
∴EN = 2DE.
∵AM = AC,
∴∠M = ∠ACM,∠CAD = ∠M + ∠ACM = 2∠M.
∵∠CAD = 2∠BAD,
∴∠M = ∠BAD = ∠BAN.在△ABN和△MCE中,$\begin{cases} ∠BAN = ∠M, \\ ∠N = ∠MEC, \\ BN = CE, \end{cases}$
∴△ABN≌△MCE(AAS),
∴AN = ME,
∴AN - AE = ME - AE,即EN = AM = AC,
∴2DE = AC,即$\frac{DE}{AC} = \frac{1}{2}$.
查看更多完整答案,请扫码查看