17.(12分)如图,在边长为$1$的正方形网格中建立平面直角坐标系,已知$\bigtriangleup ABC$三个顶点分别为$A(-1,2)$,$B(2,1)$,$C(4,5)$.
(1)画出$\bigtriangleup ABC$关于$x$轴对称的$\bigtriangleup A_{1}B_{1}C_{1}$;
(2)以原点$O$为位似中心,在$x$轴的上方画出$\bigtriangleup A_{2}B_{2}C_{2}$,使$\bigtriangleup A_{2}B_{2}C_{2}$与$\bigtriangleup ABC$位似,且位似比为$2$,并求出$\bigtriangleup A_{2}B_{2}C_{2}$的面积.

(1)画出$\bigtriangleup ABC$关于$x$轴对称的$\bigtriangleup A_{1}B_{1}C_{1}$;
(2)以原点$O$为位似中心,在$x$轴的上方画出$\bigtriangleup A_{2}B_{2}C_{2}$,使$\bigtriangleup A_{2}B_{2}C_{2}$与$\bigtriangleup ABC$位似,且位似比为$2$,并求出$\bigtriangleup A_{2}B_{2}C_{2}$的面积.
答案:
17.解:
(1)如图所示,△A₁B₁C₁就是所求三角形.
(2)如图所示,△A₂B₂C₂就是所求三角形.
因为A(-1,2),B(2,1),C(4,5),△A₂B₂C₂与△ABC位似,且位似比为2,
所以A₂(-2,4),B₂(4,2),C₂(8,10),
所以S△A₂B₂C₂ = 8×10 - $\frac{1}{2}$×6×2 - $\frac{1}{2}$×4×8 - $\frac{1}{2}$×6×10 = 28.
17.解:
(1)如图所示,△A₁B₁C₁就是所求三角形.
(2)如图所示,△A₂B₂C₂就是所求三角形.
因为A(-1,2),B(2,1),C(4,5),△A₂B₂C₂与△ABC位似,且位似比为2,
所以A₂(-2,4),B₂(4,2),C₂(8,10),
所以S△A₂B₂C₂ = 8×10 - $\frac{1}{2}$×6×2 - $\frac{1}{2}$×4×8 - $\frac{1}{2}$×6×10 = 28.
18.(12分)如图,在正方形$ABCD$中,$M$为$BC$上一点,$F$是$AM$的中点,$EF \bot AM$,垂足为$F$,交$AD$的延长线于点$E$,交$DC$于点$N$.
(1)求证:$\bigtriangleup ABM \backsim \bigtriangleup EFA$;
(2)若$AB = 12$,$BM = 5$,求$DE$的长.

(1)求证:$\bigtriangleup ABM \backsim \bigtriangleup EFA$;
(2)若$AB = 12$,$BM = 5$,求$DE$的长.
答案:
18.
(1)证明:因为四边形ABCD是正方形,
所以AB = AD,∠B = 90°,AD//BC,
所以∠AMB = ∠EAF.
又因为EF⊥AM,
所以∠AFE = 90°,
所以∠B = ∠AFE,
所以△ABM∽△EFA.
(2)解:因为∠B = 90°,AB = 12,BM = 5,
所以AM = $\sqrt{12² + 5²}$ = 13,AD = 12.
因为F是AM的中点,
所以AF = $\frac{1}{2}$AM = 6.5.
因为△ABM∽△EFA,
所以$\frac{BM}{AF}=\frac{AM}{AE}$,
即$\frac{5}{6.5}=\frac{13}{AE}$,
所以AE = 16.9,
所以DE = AE - AD = 4.9.
(1)证明:因为四边形ABCD是正方形,
所以AB = AD,∠B = 90°,AD//BC,
所以∠AMB = ∠EAF.
又因为EF⊥AM,
所以∠AFE = 90°,
所以∠B = ∠AFE,
所以△ABM∽△EFA.
(2)解:因为∠B = 90°,AB = 12,BM = 5,
所以AM = $\sqrt{12² + 5²}$ = 13,AD = 12.
因为F是AM的中点,
所以AF = $\frac{1}{2}$AM = 6.5.
因为△ABM∽△EFA,
所以$\frac{BM}{AF}=\frac{AM}{AE}$,
即$\frac{5}{6.5}=\frac{13}{AE}$,
所以AE = 16.9,
所以DE = AE - AD = 4.9.
查看更多完整答案,请扫码查看