2025年智趣暑假作业云南科技出版社七年级数学北师大版
注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2025年智趣暑假作业云南科技出版社七年级数学北师大版 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。
1. 计算:
(1)$(16m^{4}-8m^{3}-4m^{2})÷(2m)^{2}$;
(2)$(-4x^{4}+20x^{3}y-x^{2}y^{2})÷(-2x)^{2}$.
(1)$(16m^{4}-8m^{3}-4m^{2})÷(2m)^{2}$;
(2)$(-4x^{4}+20x^{3}y-x^{2}y^{2})÷(-2x)^{2}$.
答案:
(1)原式$=(16m^{4}-8m^{3}-4m^{2})÷4m^{2}$
$=16m^{4}÷4m^{2}-8m^{3}÷4m^{2}-4m^{2}÷4m^{2}$
$=4m^{2}-2m-1$
(2)原式$=(-4x^{4}+20x^{3}y-x^{2}y^{2})÷4x^{2}$
$=-4x^{4}÷4x^{2}+20x^{3}y÷4x^{2}-x^{2}y^{2}÷4x^{2}$
$=-x^{2}+5xy-\frac{1}{4}y^{2}$
(1)原式$=(16m^{4}-8m^{3}-4m^{2})÷4m^{2}$
$=16m^{4}÷4m^{2}-8m^{3}÷4m^{2}-4m^{2}÷4m^{2}$
$=4m^{2}-2m-1$
(2)原式$=(-4x^{4}+20x^{3}y-x^{2}y^{2})÷4x^{2}$
$=-4x^{4}÷4x^{2}+20x^{3}y÷4x^{2}-x^{2}y^{2}÷4x^{2}$
$=-x^{2}+5xy-\frac{1}{4}y^{2}$
2. 一个多项式与单项式$-7x^{5}y^{4}的积为21x^{5}y^{7}-28x^{7}y^{4}+7y(2x^{3}y^{2})^{2}$,求这个多项式.
答案:
解:设这个多项式为$A$,由题意得:
$A × (-7x^{5}y^{4}) = 21x^{5}y^{7} - 28x^{7}y^{4} + 7y(2x^{3}y^{2})^{2}$
先化简等式右边:
$7y(2x^{3}y^{2})^{2} = 7y × 4x^{6}y^{4} = 28x^{6}y^{5}$
则右边$=21x^{5}y^{7} - 28x^{7}y^{4} + 28x^{6}y^{5}$
所以$A = (21x^{5}y^{7} - 28x^{7}y^{4} + 28x^{6}y^{5}) ÷ (-7x^{5}y^{4})$
$=21x^{5}y^{7} ÷ (-7x^{5}y^{4}) - 28x^{7}y^{4} ÷ (-7x^{5}y^{4}) + 28x^{6}y^{5} ÷ (-7x^{5}y^{4})$
$=-3y^{3} + 4x^{2} - 4xy$
答:这个多项式为$-3y^{3} + 4x^{2} - 4xy$
$A × (-7x^{5}y^{4}) = 21x^{5}y^{7} - 28x^{7}y^{4} + 7y(2x^{3}y^{2})^{2}$
先化简等式右边:
$7y(2x^{3}y^{2})^{2} = 7y × 4x^{6}y^{4} = 28x^{6}y^{5}$
则右边$=21x^{5}y^{7} - 28x^{7}y^{4} + 28x^{6}y^{5}$
所以$A = (21x^{5}y^{7} - 28x^{7}y^{4} + 28x^{6}y^{5}) ÷ (-7x^{5}y^{4})$
$=21x^{5}y^{7} ÷ (-7x^{5}y^{4}) - 28x^{7}y^{4} ÷ (-7x^{5}y^{4}) + 28x^{6}y^{5} ÷ (-7x^{5}y^{4})$
$=-3y^{3} + 4x^{2} - 4xy$
答:这个多项式为$-3y^{3} + 4x^{2} - 4xy$
3. 已知关于x的三次三项式$x^{3}+ax^{2}-1$,除以$x^{2}-x+b所得的商为x+2$,余式为$ax+c$,求a,b,c的值.
答案:
解:根据题意,得
$x^{3}+ax^{2}-1=(x^{2}-x+b)(x+2)+(ax+c)$
展开右边:$x^{3}+2x^{2}-x^{2}-2x+bx+2b+ax+c=x^{3}+x^{2}+(b-2+a)x+(2b+c)$
比较两边系数:
$\begin{cases}a=1\\b-2+a=0\\2b+c=-1\end{cases}$
解得$a=1$,$b=1$,$c=-3$
答案:$a=1$,$b=1$,$c=-3$
$x^{3}+ax^{2}-1=(x^{2}-x+b)(x+2)+(ax+c)$
展开右边:$x^{3}+2x^{2}-x^{2}-2x+bx+2b+ax+c=x^{3}+x^{2}+(b-2+a)x+(2b+c)$
比较两边系数:
$\begin{cases}a=1\\b-2+a=0\\2b+c=-1\end{cases}$
解得$a=1$,$b=1$,$c=-3$
答案:$a=1$,$b=1$,$c=-3$
查看更多完整答案,请扫码查看