21. (14分)先阅读,后解答.
(1) 由根式的性质计算下列式子,得:
① $\sqrt{3^2} = 3$,② $\sqrt{(\frac{2}{3})^2} = \frac{2}{3}$,③ $\sqrt{(-\frac{1}{3})^2} = \frac{1}{3}$,④ $\sqrt{(-5)^2} = 5$,⑤ $\sqrt{0} = 0$.
由上述计算,请写出$\sqrt{a^2}$的结果($a$为任意实数).
(2) 利用(1)中的结论,直接写出下列问题的结果:
① $\sqrt{(3.14 - \pi)^2} = $
② 化简:$\sqrt{x^2 - 4x + 4}(x < 2) = $
(3) 应用:
若$\sqrt{(x - 5)^2} + \sqrt{(x - 8)^2} = 3$,则$x$的取值范围是
(1) 由根式的性质计算下列式子,得:
① $\sqrt{3^2} = 3$,② $\sqrt{(\frac{2}{3})^2} = \frac{2}{3}$,③ $\sqrt{(-\frac{1}{3})^2} = \frac{1}{3}$,④ $\sqrt{(-5)^2} = 5$,⑤ $\sqrt{0} = 0$.
由上述计算,请写出$\sqrt{a^2}$的结果($a$为任意实数).
(2) 利用(1)中的结论,直接写出下列问题的结果:
① $\sqrt{(3.14 - \pi)^2} = $
$\pi-3.14$
;② 化简:$\sqrt{x^2 - 4x + 4}(x < 2) = $
$2-x$
.(3) 应用:
若$\sqrt{(x - 5)^2} + \sqrt{(x - 8)^2} = 3$,则$x$的取值范围是
$5\leq x\leq8$
.(1)$\sqrt{a^{2}}=|a|=\begin{cases}a(a>0),\\0(a=0),\\-a(a<0).\end{cases}$
答案:
(1)$\sqrt{a^{2}}=|a|=\begin{cases}a(a>0),\\0(a=0),\\-a(a<0).\end{cases}$
(2)①$\pi-3.14$;②$2-x$;
(3)$5\leq x\leq8$.
(1)$\sqrt{a^{2}}=|a|=\begin{cases}a(a>0),\\0(a=0),\\-a(a<0).\end{cases}$
(2)①$\pi-3.14$;②$2-x$;
(3)$5\leq x\leq8$.
查看更多完整答案,请扫码查看