第1页
- 第1页
- 第2页
- 第3页
- 第4页
- 第5页
- 第6页
- 第7页
- 第8页
- 第9页
- 第10页
- 第11页
- 第12页
- 第13页
- 第14页
- 第15页
- 第16页
- 第17页
- 第18页
- 第19页
- 第20页
- 第21页
- 第22页
- 第23页
- 第24页
- 第25页
- 第26页
- 第27页
- 第28页
- 第29页
- 第30页
- 第31页
- 第32页
- 第33页
- 第34页
- 第35页
- 第36页
- 第37页
- 第38页
- 第39页
- 第40页
- 第41页
- 第42页
- 第43页
- 第44页
- 第45页
- 第46页
- 第47页
- 第48页
- 第49页
- 第50页
- 第51页
- 第52页
- 第53页
- 第54页
- 第55页
- 第56页
- 第57页
- 第58页
- 第59页
- 第60页
- 第61页
- 第62页
- 第63页
- 第64页
- 第65页
- 第66页
- 第67页
- 第68页
- 第69页
- 第70页
- 第71页
- 第72页
- 第73页
- 第74页
- 第75页
- 第76页
- 第77页
- 第78页
- 第79页
- 第80页
- 第81页
- 第82页
- 第83页
- 第84页
- 第85页
- 第86页
- 第87页
- 第88页
- 第89页
- 第90页
- 第91页
- 第92页
- 第93页
- 第94页
- 第95页
- 第96页
- 第97页
- 第98页
- 第99页
- 第100页
- 第101页
- 第102页
- 第103页
- 第104页
- 第105页
- 第106页
- 第107页
- 第108页
- 第109页
- 第110页
- 第111页
- 第112页
- 第113页
- 第114页
- 第115页
- 第116页
- 第117页
1. 下面是四位同学分别用三根木棍组成的图形,其中是三角形的是(
]
A
)
答案:
A
2. 如图,图中三角形的个数为

6
;以AB为边的三角形是△ABD,△ABE,△ABC
,以∠C为一个内角的三角形是△ACE,△ACD,△ACB
;在△ADE中,∠ADE的对边是AE
.
答案:
6;△ABD,△ABE,△ABC;△ACE,△ACD,△ACB;AE
3. 在△ABC中,∠A = 50°,∠C = 70°,那么∠B =(
A.40°
B.50°
C.60°
D.70°
C
)A.40°
B.50°
C.60°
D.70°
答案:
C
4. 在△ABC中,∠A,∠B,∠C的度数之比为3:2:4,则∠B的度数是(
A.20°
B.30°
C.40°
D.60°
C
)A.20°
B.30°
C.40°
D.60°
答案:
C
5. 情境题 生活应用 如图,考古学家发现在地下A处有一座古墓,古墓上方是燃气管道,为了不影响管道,准备在B处和C处开工挖出“V”字形通道. 若∠DBA = 120°,∠ECA = 125°,则∠BAC的度数是(

A.55°
B.60°
C.65°
D.75°
C
)A.55°
B.60°
C.65°
D.75°
答案:
C
6. [2025·泰安模拟] 一副三角板按如图所示放置,点A在DE上,点F在BC上,若∠EAB = 20°,则∠DFC =

115°
.
答案:
115°
7. 下列说法中错误的是(
A.三角形的三个内角中,最多有一个直角
B.三角形的三个内角中,至少有两个锐角
C.三角形中最大内角不能小于60°
D.三角形中两个内角和必大于90°
D
)A.三角形的三个内角中,最多有一个直角
B.三角形的三个内角中,至少有两个锐角
C.三角形中最大内角不能小于60°
D.三角形中两个内角和必大于90°
答案:
D 【点拨】两个锐角的和可能是锐角,也可能是直角,还可能是钝角.三角形最多有一个直角,最多有一个钝角,最少有两个锐角,最大内角不小于60°.
8. 如图,AB//CD,DE⊥CE,∠1 = 36°,则∠DCE的度数为(

A.34°
B.56°
C.66°
D.54°
D
)A.34°
B.56°
C.66°
D.54°
答案:
D
9. 如图,∠1 + ∠2 + ∠3 + ∠4 =(

A.360°
B.180°
C.280°
D.320°
C
)A.360°
B.180°
C.280°
D.320°
答案:
C
10. 如图,将△ABC沿BE翻折交AC于点D,又将△BCD沿BA'翻折,点C落在BE上的C'处,其中∠A' = 18°,∠C'DB = 68°,则原三角形中∠C的度数为(

A.87°
B.75°
C.85°
D.70°
87°
)A.87°
B.75°
C.85°
D.70°
答案:
A 【点拨】由翻折得∠A=∠A'=18°,∠CDB=∠C'DB=68°,∠ABE=∠A'BE=∠CBD,设∠ABE=∠A'BE=∠CBD=x°,则180 - 18 - 3x=180 - 68 - x,解得x=25,所以∠C=180° - ∠CDB - ∠CBD=180° - 68° - 25°=87°.
11. 如图,点D在AB的延长线上,点E在AC的延长线上,∠DBC和∠ECB的平分线交于点O,设∠A = m,则∠BOC =(

A.90° - m
B.90° - $\frac{m}{2}$
C.180° - 2m
D.180° - $\frac{m}{2}$
90° - $\frac{m}{2}$
)A.90° - m
B.90° - $\frac{m}{2}$
C.180° - 2m
D.180° - $\frac{m}{2}$
答案:
B 【点拨】由三角形内角和为180°,得∠ABC+∠ACB=180° - ∠A=180° - m.所以∠DBC+∠BCE=180° - ∠ABC+180° - ∠ACB=360° - (∠ABC+∠ACB)=180°+m.因为∠DBC和∠ECB的平分线交于点O,所以∠OBC+∠OCB= $\frac{1}{2}$(∠DBC+∠BCE)=90°+$\frac{m}{2}$.所以∠BOC=180° - (∠OBC+∠OCB)=90° - $\frac{m}{2}$.
查看更多完整答案,请扫码查看