1. 已知$\frac{x}{2}=\frac{y}{3}=\frac{z}{4}$,且$x + y - z = 2$,求$x$,$y$,$z$的值.
答案:
1.解:设$\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=k$,则$x=2k,y=3k,z=4k$.
将$x=2k,y=3k,z=4k$代入$x+y-z=2$,得
$2k+3k-4k=2$,解得$k=2$.
$\therefore x=2k=4,y=3k=6,z=4k=8$.
将$x=2k,y=3k,z=4k$代入$x+y-z=2$,得
$2k+3k-4k=2$,解得$k=2$.
$\therefore x=2k=4,y=3k=6,z=4k=8$.
2. (2024·阜宁县期末)已知线段$a$,$b$满足$a:b = 3:2$,且$a + 2b = 42$.
(1)求线段$a$,$b$的长;
(2)若线段$c$是线段$a$,$b$的比例中项,求线段$c$的长.
(1)求线段$a$,$b$的长;
(2)若线段$c$是线段$a$,$b$的比例中项,求线段$c$的长.
答案:
2.解:
(1)$\because a:b=3:2$,$\therefore$设$a=3k,b=2k$.
$\because a+2b=42$,$\therefore 3k+4k=42$,$\therefore k=6$,$\therefore a=18,b=12$.
(2)$\because c$是$a,b$的比例中项,$\therefore c^{2}=ab=216$,
$\because c>0$,$\therefore c=\sqrt{216}=6\sqrt{6}$.
(1)$\because a:b=3:2$,$\therefore$设$a=3k,b=2k$.
$\because a+2b=42$,$\therefore 3k+4k=42$,$\therefore k=6$,$\therefore a=18,b=12$.
(2)$\because c$是$a,b$的比例中项,$\therefore c^{2}=ab=216$,
$\because c>0$,$\therefore c=\sqrt{216}=6\sqrt{6}$.
3. (1)已知$\frac{b}{a}=\frac{3}{4}$,求$\frac{a - 2b}{a + 2b}$的值;
(2)已知$\frac{x}{2}=\frac{y}{3}=\frac{z}{4}≠0$,求$\frac{x - 2y + 3z}{x + y + z}$的值.
(2)已知$\frac{x}{2}=\frac{y}{3}=\frac{z}{4}≠0$,求$\frac{x - 2y + 3z}{x + y + z}$的值.
答案:
3.解:
(1)$\because \frac{b}{a}=\frac{3}{4}$,$\therefore 2b=1.5a$,$\therefore \frac{a-2b}{a+2b}=\frac{a-1.5a}{a+1.5a}=-\frac{1}{5}$.
(2)设$\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=k(k≠0)$,则$x=2k,y=3k,z=4k$,
$\therefore \frac{x-2y+3z}{x+y+z}=\frac{2k-6k+12k}{2k+3k+4k}=\frac{8}{9}$.
(1)$\because \frac{b}{a}=\frac{3}{4}$,$\therefore 2b=1.5a$,$\therefore \frac{a-2b}{a+2b}=\frac{a-1.5a}{a+1.5a}=-\frac{1}{5}$.
(2)设$\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=k(k≠0)$,则$x=2k,y=3k,z=4k$,
$\therefore \frac{x-2y+3z}{x+y+z}=\frac{2k-6k+12k}{2k+3k+4k}=\frac{8}{9}$.
4. 在一幅比例尺是$1:2000000$的地图上,量得甲、乙两个城市之间的高速公路的距离是$5.5\mathrm{cm}$. 在另一幅比例尺是$1:5000000$的地图上,这段高速公路的图上距离是多少厘米?
答案:
4.解:设甲、乙两个城市之间的高速公路的实际距离是$x\ \mathrm{cm}$,
根据题意,得$1:2000000=5.5:x$,
解得$x=11000000$.
设在比例尺为$1:5000000$的地图上,这段高速公路的图上距离为$y\ \mathrm{cm}$,
根据题意,得$1:5000000=y:11000000$,解得$y=2.2$.
答:这段高速公路的图上距离是$2.2\ \mathrm{cm}$.
根据题意,得$1:2000000=5.5:x$,
解得$x=11000000$.
设在比例尺为$1:5000000$的地图上,这段高速公路的图上距离为$y\ \mathrm{cm}$,
根据题意,得$1:5000000=y:11000000$,解得$y=2.2$.
答:这段高速公路的图上距离是$2.2\ \mathrm{cm}$.
5. 若点$P$在线段$AB$上,点$Q$在线段$AB$的延长线上,$AB = 10$,$\frac{AP}{BP}=\frac{AQ}{BQ}=\frac{3}{2}$. 求线段$PQ$的长.
答案:
5.解:如答图.$\because AB=10,\frac{AP}{BP}=\frac{AQ}{BQ}=\frac{3}{2}$,
$\therefore PB=4,BQ=20,\therefore PQ=PB+BQ=24$.

5.解:如答图.$\because AB=10,\frac{AP}{BP}=\frac{AQ}{BQ}=\frac{3}{2}$,
$\therefore PB=4,BQ=20,\therefore PQ=PB+BQ=24$.
查看更多完整答案,请扫码查看