1. (2024·滨湖区期末)在△ABC 中,∠C = 90°,a,b,c 分别为∠A,∠B,∠C 所对的边长.
(1)已知∠A = 45°,c = 6,求 a 的值;
(2)已知 a = $\sqrt{6}$,b = $\sqrt{2}$,求 c 的值和∠B 的度数.
(1)已知∠A = 45°,c = 6,求 a 的值;
(2)已知 a = $\sqrt{6}$,b = $\sqrt{2}$,求 c 的值和∠B 的度数.
答案:
1. 解:
(1) 在Rt△ABC中, sinA = $\frac{a}{c}$.
∵∠A = 45°, c = 6,
∴ $\frac{a}{6}$ = $\frac{\sqrt{2}}{2}$,
∴ a = 3$\sqrt{2}$.
(2) 在Rt△ABC中,
∵ a = $\sqrt{6}$, b = $\sqrt{2}$,
∴ c = $\sqrt{(\sqrt{6})^{2} + (\sqrt{2})^{2}}$ = 2$\sqrt{2}$,
∴ tanB = $\frac{b}{a}$ = $\frac{\sqrt{2}}{\sqrt{6}}$ = $\frac{\sqrt{3}}{3}$,
∴ ∠B = 30°.
(1) 在Rt△ABC中, sinA = $\frac{a}{c}$.
∵∠A = 45°, c = 6,
∴ $\frac{a}{6}$ = $\frac{\sqrt{2}}{2}$,
∴ a = 3$\sqrt{2}$.
(2) 在Rt△ABC中,
∵ a = $\sqrt{6}$, b = $\sqrt{2}$,
∴ c = $\sqrt{(\sqrt{6})^{2} + (\sqrt{2})^{2}}$ = 2$\sqrt{2}$,
∴ tanB = $\frac{b}{a}$ = $\frac{\sqrt{2}}{\sqrt{6}}$ = $\frac{\sqrt{3}}{3}$,
∴ ∠B = 30°.
2. 如图,在 Rt△ABC 中,∠C = 90°,BC = 4,tanB = $\frac{3}{4}$. 求 sinA 的值.

答案:
2. 解: 在Rt△ABC中,
∵∠C = 90°, BC = 4,
∴ tanB = $\frac{AC}{BC}$ = $\frac{AC}{4}$ = $\frac{3}{4}$,
∴ AC = 3.
∵AB² = AC² + BC²,
∴ AB = 5,
∴ sinA = $\frac{BC}{AB}$ = $\frac{4}{5}$.
∵∠C = 90°, BC = 4,
∴ tanB = $\frac{AC}{BC}$ = $\frac{AC}{4}$ = $\frac{3}{4}$,
∴ AC = 3.
∵AB² = AC² + BC²,
∴ AB = 5,
∴ sinA = $\frac{BC}{AB}$ = $\frac{4}{5}$.
3. 如图,在△ABC 中,AD⊥BC 于点 D,若 AD = 6,tanC = $\frac{3}{2}$,BC = 12,求 cosB 的值.

答案:
3. 解:
∵AD⊥BC,
∴∠ADB = ∠ADC = 90°.
∵tanC = $\frac{AD}{CD}$ = $\frac{6}{CD}$ = $\frac{3}{2}$,
∴ CD = 4,
∴ BD = BC - CD = 12 - 4 = 8.
在Rt△ABD中, AB = $\sqrt{AD^{2} + BD^{2}}$ = $\sqrt{6^{2} + 8^{2}}$ = 10,
∴ cosB = $\frac{BD}{AB}$ = $\frac{4}{5}$.
∵AD⊥BC,
∴∠ADB = ∠ADC = 90°.
∵tanC = $\frac{AD}{CD}$ = $\frac{6}{CD}$ = $\frac{3}{2}$,
∴ CD = 4,
∴ BD = BC - CD = 12 - 4 = 8.
在Rt△ABD中, AB = $\sqrt{AD^{2} + BD^{2}}$ = $\sqrt{6^{2} + 8^{2}}$ = 10,
∴ cosB = $\frac{BD}{AB}$ = $\frac{4}{5}$.
4. (2024·梁溪区期末)在△ABC 中,∠A = 30°,AB = 6.
(1)如图①,若∠C = 90°,则 AC =
(2)如图②,若∠C = 45°,求 AC 的长.

(1)如图①,若∠C = 90°,则 AC =
3$\sqrt{3}$
;(2)如图②,若∠C = 45°,求 AC 的长.
答案:
4.
(1) 3$\sqrt{3}$
(2) 解: 如答图, 过点B作AC的垂线, 垂足为M.
在Rt△ABM中, sinA = $\frac{BM}{AB}$, 所以 $\frac{BM}{6}$ = $\frac{1}{2}$,
所以 BM = 3, 所以 AM = 3$\sqrt{3}$.
在Rt△BCM中, tanC = $\frac{BM}{CM}$, 所以 $\frac{3}{CM}$ = 1,
所以 CM = 3, 所以 AC = AM + CM = 3$\sqrt{3}$ + 3.
4.
(1) 3$\sqrt{3}$
(2) 解: 如答图, 过点B作AC的垂线, 垂足为M.
在Rt△ABM中, sinA = $\frac{BM}{AB}$, 所以 $\frac{BM}{6}$ = $\frac{1}{2}$,
所以 BM = 3, 所以 AM = 3$\sqrt{3}$.
在Rt△BCM中, tanC = $\frac{BM}{CM}$, 所以 $\frac{3}{CM}$ = 1,
所以 CM = 3, 所以 AC = AM + CM = 3$\sqrt{3}$ + 3.
查看更多完整答案,请扫码查看