2025年知识大通关九年级数学全一册人教版


注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2025年知识大通关九年级数学全一册人教版 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。



《2025年知识大通关九年级数学全一册人教版》

第201页
例3 用公式法解下列方程:
(1)$3x^2 + x - 1 = 0$;
(2)$6x^2 + 4 = 2\sqrt{5}x$.
答案: 解:
(1)$\because a = 3$,$b = 1$,$c = -1$,
$\Delta = b^2 - 4ac = 1^2 - 4 × 3 × (-1) = 13 > 0$,
$\therefore x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{-1 \pm \sqrt{13}}{2 × 3} = \frac{-1 \pm \sqrt{13}}{6}$,
即$x_1 = \frac{-1 + \sqrt{13}}{6}$,$x_2 = \frac{-1 - \sqrt{13}}{6}$.
(2)原方程可化为$3x^2 - \sqrt{5}x + 2 = 0$.
$\because a = 3$,$b = -\sqrt{5}$,$c = 2$,
$\Delta = (-\sqrt{5})^2 - 4 × 3 × 2 = -19 < 0$,
$\therefore$原方程无实数根.
例4 用因式分解法解下列方程:
(1)$x^2 - 14x = 0$;
(2)$x^2 - 6x = -9$;
(3)$x(5x + 4) = 5x + 4$;
(4)$(3x - 1)^2 = (x - 1)^2$.
答案: 解:
(1)因式分解,得$x(x - 14) = 0$,
$\therefore x = 0$或$x - 14 = 0$.
$\therefore x_1 = 0$,$x_2 = 14$.
(2)移项,得$x^2 - 6x + 9 = 0$.
因式分解,得$(x - 3)^2 = 0$.
$\therefore x_1 = x_2 = 3$.
(3)移项,得$x(5x + 4) - (5x + 4) = 0$.
因式分解,得$(x - 1)(5x + 4) = 0$.
$\therefore x - 1 = 0$或$5x + 4 = 0$.
$\therefore x_1 = 1$,$x_2 = -\frac{4}{5}$.
(4)移项,得$(3x - 1)^2 - (x - 1)^2 = 0$.
因式分解,得$(3x - 1 + x - 1)(3x - 1 - x + 1) = 0$,
即$2x(4x - 2) = 0$.
$\therefore 2x = 0$或$4x - 2 = 0$.
$\therefore x_1 = 0$,$x_2 = \frac{1}{2}$.
例5 不解方程,判断下列方程根的情况:
(1)$7x^2 + 2x + 3 = 0$;
(2)$4(x^2 - x) = -1$.
答案: 解:
(1)$\because \Delta = 2^2 - 4 × 7 × 3 = 4 - 84 = -80 < 0$,
$\therefore$原方程没有实数根.
(2)原方程化为一般形式是$4x^2 - 4x + 1 = 0$.
$\because \Delta = (-4)^2 - 4 × 4 × 1 = 16 - 16 = 0$,
$\therefore$原方程有两个相等的实数根.
例6 已知关于$x$的一元二次方程$x^2 + 4x + m - 1 = 0$有两个实数根,分别记为$x_1$,$x_2$.
(1)求$m$的取值范围;
(2)若$2(x_1 + x_2) + x_1x_2 + 10 = 0$,求$m$的值.
答案: 解:
(1)$\because$关于$x$的一元二次方程$x^2 + 4x + m - 1 = 0$有两个实数根,
$\therefore \Delta = b^2 - 4ac = 4^2 - 4(m - 1) \geq 0$,
解得$m \leq 5$.
(2)由题意,得$x_1 + x_2 = -4$,$x_1x_2 = m - 1$.
$\because 2(x_1 + x_2) + x_1x_2 + 10 = 0$,
$\therefore 2 × (-4) + m - 1 + 10 = 0$.
解得$m = -1$.

查看更多完整答案,请扫码查看

关闭