1. 如图,在平面直角坐标系中,抛物线$y = - x^{2} + 2x + 3$与$x$轴交于点$A$,$B$,与$y$轴交于点$C$,作直线 BC.$P$是线段 BC 上方的抛物线上一动点,过点$P$作$PQ \perp BC$,垂足为$Q$,则线段 PQ 的最大值为

$\frac{9\sqrt{2}}{8}$
,此时点$P$的坐标为$\left(\frac{3}{2},\frac{15}{4}\right)$
.
答案:
1.$\frac{9\sqrt{2}}{8}$ $\left(\frac{3}{2},\frac{15}{4}\right)$ 点拨:如答图,过点P作PN⊥AB于点N,交BC于点M.令$-x^{2}+2x+3=0$,解得$x_{1}=-1$,$x_{2}=3$,$\therefore A(-1,0)$,$B(3,0)$.令$x=0$,则$y=3$,$\therefore C(0,3)$.
$\because B(3,0)$,$C(0,3)$,$\therefore$直线BC的函数表达式为$y=-x+3$.
$\because OB=OC$,$\angle BOC=90^{\circ}$,$\therefore\angle CBO=45^{\circ}$. $\because\angle MNB=90^{\circ}$,$\therefore\angle PMQ=\angle NMB=45^{\circ}$. $\because PQ\perp BC$,$\therefore\triangle PQM$是等腰直角三角形,$\therefore PM=\sqrt{2}PQ$,$\therefore PM$的值最大时,$PQ$的值最大.
设$P(m,-m^{2}+2m+3)$,则$M(m,-m+3)$,$\therefore PM=-m^{2}+2m+3-(-m+3)=-m^{2}+3m$.
$\because -1<0$,$\therefore$当$m=\frac{3}{2}$时,$PM$的值最大,$PM$的最大值为$-\frac{9}{4}+\frac{9}{2}=\frac{9}{4}$,
$\therefore PQ$的最大值为$\frac{\sqrt{2}}{2}PM=\frac{9\sqrt{2}}{8}$,此时点P的坐标为$\left(\frac{3}{2},\frac{15}{4}\right)$.
1.$\frac{9\sqrt{2}}{8}$ $\left(\frac{3}{2},\frac{15}{4}\right)$ 点拨:如答图,过点P作PN⊥AB于点N,交BC于点M.令$-x^{2}+2x+3=0$,解得$x_{1}=-1$,$x_{2}=3$,$\therefore A(-1,0)$,$B(3,0)$.令$x=0$,则$y=3$,$\therefore C(0,3)$.
$\because B(3,0)$,$C(0,3)$,$\therefore$直线BC的函数表达式为$y=-x+3$.
$\because OB=OC$,$\angle BOC=90^{\circ}$,$\therefore\angle CBO=45^{\circ}$. $\because\angle MNB=90^{\circ}$,$\therefore\angle PMQ=\angle NMB=45^{\circ}$. $\because PQ\perp BC$,$\therefore\triangle PQM$是等腰直角三角形,$\therefore PM=\sqrt{2}PQ$,$\therefore PM$的值最大时,$PQ$的值最大.
设$P(m,-m^{2}+2m+3)$,则$M(m,-m+3)$,$\therefore PM=-m^{2}+2m+3-(-m+3)=-m^{2}+3m$.
$\because -1<0$,$\therefore$当$m=\frac{3}{2}$时,$PM$的值最大,$PM$的最大值为$-\frac{9}{4}+\frac{9}{2}=\frac{9}{4}$,
$\therefore PQ$的最大值为$\frac{\sqrt{2}}{2}PM=\frac{9\sqrt{2}}{8}$,此时点P的坐标为$\left(\frac{3}{2},\frac{15}{4}\right)$.
2. 如图是直线$l:y_{1} = x + 4$和抛物线$y_{2} = - x^{2} + 2x$在同一平面直角坐标系中,$P$为抛物线上一动点,则点$P$到直线$l$的距离的最小值为

$\frac{15\sqrt{2}}{8}$
.
答案:
2.$\frac{15\sqrt{2}}{8}$ 点拨:如答图,过点P作$PH\perp y$轴于点H,作PQ//y轴,交直线$y = x + 4$于点Q.
设$P(t,-t^{2}+2t)$,$Q(t,t+4)$,则$PQ=t+4-(-t^{2}+2t)=t^{2}-t+4$.
$\because y = x + 4$,$\therefore\angle PQH=45^{\circ}$,
$\therefore PH=\frac{\sqrt{2}}{2}PQ=\frac{\sqrt{2}}{2}(t^{2}-t+4)=\frac{\sqrt{2}}{2}\left(t-\frac{1}{2}\right)^{2}+\frac{15\sqrt{2}}{8}$.
$\because\frac{\sqrt{2}}{2}>0$,$\therefore$当$t=\frac{1}{2}$时,$PH$有最小值,最小值为$\frac{15\sqrt{2}}{8}$.
2.$\frac{15\sqrt{2}}{8}$ 点拨:如答图,过点P作$PH\perp y$轴于点H,作PQ//y轴,交直线$y = x + 4$于点Q.
设$P(t,-t^{2}+2t)$,$Q(t,t+4)$,则$PQ=t+4-(-t^{2}+2t)=t^{2}-t+4$.
$\because y = x + 4$,$\therefore\angle PQH=45^{\circ}$,
$\therefore PH=\frac{\sqrt{2}}{2}PQ=\frac{\sqrt{2}}{2}(t^{2}-t+4)=\frac{\sqrt{2}}{2}\left(t-\frac{1}{2}\right)^{2}+\frac{15\sqrt{2}}{8}$.
$\because\frac{\sqrt{2}}{2}>0$,$\therefore$当$t=\frac{1}{2}$时,$PH$有最小值,最小值为$\frac{15\sqrt{2}}{8}$.
3. 如图,抛物线$y = - \frac{1}{2}x^{2} + \frac{3}{2}x + 2$与$x$轴交于点$A$,$B$,与$y$轴交于点$C$,顶点为$M$,连接 BC. 若$D$是直线 BC 上方抛物线上一动点,连接 OD 交 BC 于点$E$,当$\frac{DE}{OE}$的值最大时,求点 D 的坐标.

答案:
3.解:如答图,过点D作$DH// y$轴,交BC于点H.
设$D\left(m,-\frac{1}{2}m^{2}+\frac{3}{2}m+2\right)$.在$y=-\frac{1}{2}x^{2}+\frac{3}{2}x+2$中,令$x=0$,则$y=2$,$\therefore C(0,2)$.令$y=0$,则$-\frac{1}{2}x^{2}+\frac{3}{2}x+2=0$,解得$x_{1}=-1$,$x_{2}=4$,$\therefore A(-1,0)$,$B(4,0)$.
由点$B(4,0)$,$C(0,2)$,知直线BC的函数表达式为$y=-\frac{1}{2}x+2$,$\therefore H\left(m,-\frac{1}{2}m+2\right)$,
$\therefore DH=-\frac{1}{2}m^{2}+\frac{3}{2}m+2-(-\frac{1}{2}m+2)=-\frac{1}{2}m^{2}+2m$. $\because DH// y$轴,$\therefore\triangle OCE\backsim\triangle DHE$,
$\therefore\frac{DE}{OE}=\frac{DH}{CO}=\frac{-\frac{1}{2}m^{2}+2m}{2}=-\frac{1}{4}(m - 2)^{2}+1$.
$\because-\frac{1}{4}<0$,$\therefore$当$m = 2$时,$\frac{DE}{OE}$的值最大,此时点D的坐标为$(2,3)$.
3.解:如答图,过点D作$DH// y$轴,交BC于点H.
设$D\left(m,-\frac{1}{2}m^{2}+\frac{3}{2}m+2\right)$.在$y=-\frac{1}{2}x^{2}+\frac{3}{2}x+2$中,令$x=0$,则$y=2$,$\therefore C(0,2)$.令$y=0$,则$-\frac{1}{2}x^{2}+\frac{3}{2}x+2=0$,解得$x_{1}=-1$,$x_{2}=4$,$\therefore A(-1,0)$,$B(4,0)$.
由点$B(4,0)$,$C(0,2)$,知直线BC的函数表达式为$y=-\frac{1}{2}x+2$,$\therefore H\left(m,-\frac{1}{2}m+2\right)$,
$\therefore DH=-\frac{1}{2}m^{2}+\frac{3}{2}m+2-(-\frac{1}{2}m+2)=-\frac{1}{2}m^{2}+2m$. $\because DH// y$轴,$\therefore\triangle OCE\backsim\triangle DHE$,
$\therefore\frac{DE}{OE}=\frac{DH}{CO}=\frac{-\frac{1}{2}m^{2}+2m}{2}=-\frac{1}{4}(m - 2)^{2}+1$.
$\because-\frac{1}{4}<0$,$\therefore$当$m = 2$时,$\frac{DE}{OE}$的值最大,此时点D的坐标为$(2,3)$.
查看更多完整答案,请扫码查看