1. 如图,在$Rt\triangle ABC$中,$\angle ABC = 90^{\circ}$,$AB = 4$,$BC = 2$,$BD$是边$AC$上的高. 点$E$,$F$分别在边$AB$,$BC$上(不与端点重合),且$DE\perp DF$. 设$AE = x$,四边形$DEBF$的面积为$y$,则$y$关于$x$的函数图像为 (

A
)
答案:
1.A 点拨:过点D作DG⊥AB于点G,作DH⊥BC于点H,如答图.
∵在Rt△ABC中,BD⊥AC,由勾股定理,得$AC = \sqrt{AB^{2} + BC^{2}} = 2\sqrt{5}$,则$BD = \frac{AB· BC}{AC} = \frac{4 × 2}{2\sqrt{5}} = \frac{4\sqrt{5}}{5}$.易证△ABC∽△ADB∽△BDC,
∴$\frac{BC}{AB} = \frac{BD}{AD} = \frac{CD}{BD} = \frac{2}{4} = \frac{1}{2}$,
∴$CD = \frac{1}{2}BD = \frac{2\sqrt{5}}{5}$,$AD = 2BD = \frac{8\sqrt{5}}{5}$.
在Rt△BDC中,
∵∠BDC = 90°,
∴$DH· BC = CD· BD$,
∴$DH = \frac{CD· BD}{BC} = \frac{\frac{2\sqrt{5}}{5} × \frac{4\sqrt{5}}{5}}{2} = \frac{4}{5}$.
在Rt△ADB中,
∵∠ADB = 90°,
∴$AD· DB = DG· AB$,
∴$DG = \frac{AD· DB}{AB} = \frac{\frac{8\sqrt{5}}{5} × \frac{4\sqrt{5}}{5}}{4} = \frac{8}{5}$.
∵∠ADB = ∠EDF = 90°,
∴∠ADB - ∠BDE = ∠EDF - ∠BDE,即∠ADE = ∠BDF.
又
∵∠DAE + ∠ABD = ∠DBF + ∠ABD = 90°,
∴∠DAE = ∠DBF,
∴△ADE∽△BDF,
∴$\frac{BF}{AE} = \frac{BD}{AD} = \frac{\frac{4\sqrt{5}}{5}}{\frac{8\sqrt{5}}{5}} = \frac{1}{2}$,则$BF = \frac{1}{2}AE = \frac{1}{2}x$,
∴$y = S_{四边形BEDF} = S_{\triangle BDE} + S_{\triangle BDF} = \frac{1}{2}(4 - x) × \frac{8}{5} + \frac{1}{2} × \frac{1}{2}x × \frac{4}{5} = -\frac{3}{5}x + \frac{16}{5}(0 < x < 4)$.
1.A 点拨:过点D作DG⊥AB于点G,作DH⊥BC于点H,如答图.
∵在Rt△ABC中,BD⊥AC,由勾股定理,得$AC = \sqrt{AB^{2} + BC^{2}} = 2\sqrt{5}$,则$BD = \frac{AB· BC}{AC} = \frac{4 × 2}{2\sqrt{5}} = \frac{4\sqrt{5}}{5}$.易证△ABC∽△ADB∽△BDC,
∴$\frac{BC}{AB} = \frac{BD}{AD} = \frac{CD}{BD} = \frac{2}{4} = \frac{1}{2}$,
∴$CD = \frac{1}{2}BD = \frac{2\sqrt{5}}{5}$,$AD = 2BD = \frac{8\sqrt{5}}{5}$.
在Rt△BDC中,
∵∠BDC = 90°,
∴$DH· BC = CD· BD$,
∴$DH = \frac{CD· BD}{BC} = \frac{\frac{2\sqrt{5}}{5} × \frac{4\sqrt{5}}{5}}{2} = \frac{4}{5}$.
在Rt△ADB中,
∵∠ADB = 90°,
∴$AD· DB = DG· AB$,
∴$DG = \frac{AD· DB}{AB} = \frac{\frac{8\sqrt{5}}{5} × \frac{4\sqrt{5}}{5}}{4} = \frac{8}{5}$.
∵∠ADB = ∠EDF = 90°,
∴∠ADB - ∠BDE = ∠EDF - ∠BDE,即∠ADE = ∠BDF.
又
∵∠DAE + ∠ABD = ∠DBF + ∠ABD = 90°,
∴∠DAE = ∠DBF,
∴△ADE∽△BDF,
∴$\frac{BF}{AE} = \frac{BD}{AD} = \frac{\frac{4\sqrt{5}}{5}}{\frac{8\sqrt{5}}{5}} = \frac{1}{2}$,则$BF = \frac{1}{2}AE = \frac{1}{2}x$,
∴$y = S_{四边形BEDF} = S_{\triangle BDE} + S_{\triangle BDF} = \frac{1}{2}(4 - x) × \frac{8}{5} + \frac{1}{2} × \frac{1}{2}x × \frac{4}{5} = -\frac{3}{5}x + \frac{16}{5}(0 < x < 4)$.
2. 如图,在$\triangle ABC$中,$\angle ACB = 90^{\circ}$,$CD\perp AB$,垂足为$D$,$E$是$BC$边上一点,连接$AE$交$CD$于点$F$,且$AC^{2}=CD· AE$.
(1)求证:$\angle CEA = \angle CAB$;
(2)作$CG\perp AE$,垂足为$G$,延长$CG$交$AB$于点$M$,求证:$AE· CM = AB· CF$.

(1)求证:$\angle CEA = \angle CAB$;
(2)作$CG\perp AE$,垂足为$G$,延长$CG$交$AB$于点$M$,求证:$AE· CM = AB· CF$.
答案:
2.证明:
(1)
∵$AC^{2} = CD· AE$,
∴$\frac{AE}{AC} = \frac{AC}{CD}$.
设$\frac{AE}{AC} = \frac{AC}{CD} = k$,则$AE = kAC$,$AC = kCD$,
在Rt△ACE中,$CE = \sqrt{AE^{2} - AC^{2}} = \sqrt{k^{2} - 1}AC$,
在Rt△ACD中,$AD = \sqrt{AC^{2} - CD^{2}} = \sqrt{k^{2} - 1}CD$,
∴$\frac{CE}{AC} = \sqrt{k^{2} - 1} = \frac{AD}{CD}$.
又
∵∠ACE = ∠CDA = 90°,
∴△ACE∽△CDA,
∴∠AEC = ∠CAD,即∠CEA = ∠CAB.
(2)补全图形如答图.
由
(1)可知∠CEA = ∠CAB,又
∵∠ACE = ∠BCA = 90°,
∴△ACE∽△BCA,
∴$\frac{BC}{AC} = \frac{AB}{AE}$,∠CAE = ∠B.
∵∠CAD = ∠BAC,∠ADC = ∠ACB = 90°,
∴△ACD∽△ABC,
∴$\frac{CD}{BC} = \frac{AD}{AC}$,∠ACD = ∠B,
∴$\frac{CD}{AD} = \frac{BC}{AC}$,∠CAE = ∠ACD,
∴$\frac{AB}{AE} = \frac{CD}{AD}$,$AF = CF$.
∵$CD\bot AB$,$CG\bot AE$,
∴∠CDM = ∠ADF = ∠CGF = 90°.
又
∵∠AFD = ∠CFG,
∴∠DCM = ∠DAF,
∴△DCM∽△DAF,
∴$\frac{CM}{AF} = \frac{CD}{AD}$,
∴$\frac{CM}{AF} = \frac{AB}{AE}$.
又
∵$AF = CF$,
∴$\frac{CM}{CF} = \frac{AB}{AE}$,
∴$AE· CM = AB· CF$.
2.证明:
(1)
∵$AC^{2} = CD· AE$,
∴$\frac{AE}{AC} = \frac{AC}{CD}$.
设$\frac{AE}{AC} = \frac{AC}{CD} = k$,则$AE = kAC$,$AC = kCD$,
在Rt△ACE中,$CE = \sqrt{AE^{2} - AC^{2}} = \sqrt{k^{2} - 1}AC$,
在Rt△ACD中,$AD = \sqrt{AC^{2} - CD^{2}} = \sqrt{k^{2} - 1}CD$,
∴$\frac{CE}{AC} = \sqrt{k^{2} - 1} = \frac{AD}{CD}$.
又
∵∠ACE = ∠CDA = 90°,
∴△ACE∽△CDA,
∴∠AEC = ∠CAD,即∠CEA = ∠CAB.
(2)补全图形如答图.
由
(1)可知∠CEA = ∠CAB,又
∵∠ACE = ∠BCA = 90°,
∴△ACE∽△BCA,
∴$\frac{BC}{AC} = \frac{AB}{AE}$,∠CAE = ∠B.
∵∠CAD = ∠BAC,∠ADC = ∠ACB = 90°,
∴△ACD∽△ABC,
∴$\frac{CD}{BC} = \frac{AD}{AC}$,∠ACD = ∠B,
∴$\frac{CD}{AD} = \frac{BC}{AC}$,∠CAE = ∠ACD,
∴$\frac{AB}{AE} = \frac{CD}{AD}$,$AF = CF$.
∵$CD\bot AB$,$CG\bot AE$,
∴∠CDM = ∠ADF = ∠CGF = 90°.
又
∵∠AFD = ∠CFG,
∴∠DCM = ∠DAF,
∴△DCM∽△DAF,
∴$\frac{CM}{AF} = \frac{CD}{AD}$,
∴$\frac{CM}{AF} = \frac{AB}{AE}$.
又
∵$AF = CF$,
∴$\frac{CM}{CF} = \frac{AB}{AE}$,
∴$AE· CM = AB· CF$.
3. 如图,在$Rt\triangle ACB$中,$\angle ACB = 90^{\circ}$,$AC = BC = 6$,$CD = 2$,$CH\perp BD$于点$H$,$O$是$AB$的中点,连接$OH$,求$OH$的长度.

答案:
3.解:在BH上截取$BE = CH$,连接CO,OE,如答图所示.
∵∠ACB = 90°,
∴在Rt△BCD中,$BC = 6$,$CD = 2$,
由勾股定理,得$BD = \sqrt{BC^{2} + CD^{2}} = \sqrt{6^{2} + 2^{2}} = 2\sqrt{10}$.
∵∠ACB = 90°,$CH\bot BD$,
∴∠DCH + ∠BCH = 90°,∠DBC + ∠BCH = 90°,
∴∠DCH = ∠DBC,又
∵∠CDH = ∠BDC,
∴△CDH∽△BDC,
∴$\frac{CH}{BC} = \frac{DH}{CD} = \frac{CD}{BD}$,
∴$\frac{CH}{6} = \frac{DH}{2} = \frac{2}{2\sqrt{10}}$,
∴$CH = \frac{3\sqrt{10}}{5}$,$DH = \frac{\sqrt{10}}{5}$,
∴$BE = CH = \frac{3\sqrt{10}}{5}$,
∴$EH = BD - BE - DH = 2\sqrt{10} - \frac{3\sqrt{10}}{5} - \frac{\sqrt{10}}{5} = \frac{6\sqrt{10}}{5}$.
在Rt△ACB中,∠ACB = 90°,$AC = BC = 6$,O是AB的中点,
∴$OC\bot AB$,$OB = OA = OC$,∠ABC = 45°,∠ACO = 45°,
∴∠EBO + ∠DBC = 45°,∠DCH + ∠HCO = 45°.
∵∠DCH = ∠DBC,
∴∠EBO = ∠HCO.
在△EBO和△HCO中,$\begin{cases}OB = OC,\\∠EBO = ∠HCO,\\BE = CH,\end{cases}$
∴△EBO≌△HCO(SAS),
∴$OE = OH$,∠EOB = ∠HOC.
∵$OC\bot AB$,
∴∠COE + ∠EOB = 90°,
∴∠COE + ∠HOC = 90°,即∠EOH = 90°,
∴△EOH是等腰直角三角形,由勾股定理,得$EH = \sqrt{OH^{2} + OE^{2}} = \sqrt{2}OH$,
∴$OH = \frac{\sqrt{2}}{2}EH = \frac{\sqrt{2}}{2} × \frac{6\sqrt{10}}{5} = \frac{6\sqrt{5}}{5}$.
3.解:在BH上截取$BE = CH$,连接CO,OE,如答图所示.
∵∠ACB = 90°,
∴在Rt△BCD中,$BC = 6$,$CD = 2$,
由勾股定理,得$BD = \sqrt{BC^{2} + CD^{2}} = \sqrt{6^{2} + 2^{2}} = 2\sqrt{10}$.
∵∠ACB = 90°,$CH\bot BD$,
∴∠DCH + ∠BCH = 90°,∠DBC + ∠BCH = 90°,
∴∠DCH = ∠DBC,又
∵∠CDH = ∠BDC,
∴△CDH∽△BDC,
∴$\frac{CH}{BC} = \frac{DH}{CD} = \frac{CD}{BD}$,
∴$\frac{CH}{6} = \frac{DH}{2} = \frac{2}{2\sqrt{10}}$,
∴$CH = \frac{3\sqrt{10}}{5}$,$DH = \frac{\sqrt{10}}{5}$,
∴$BE = CH = \frac{3\sqrt{10}}{5}$,
∴$EH = BD - BE - DH = 2\sqrt{10} - \frac{3\sqrt{10}}{5} - \frac{\sqrt{10}}{5} = \frac{6\sqrt{10}}{5}$.
在Rt△ACB中,∠ACB = 90°,$AC = BC = 6$,O是AB的中点,
∴$OC\bot AB$,$OB = OA = OC$,∠ABC = 45°,∠ACO = 45°,
∴∠EBO + ∠DBC = 45°,∠DCH + ∠HCO = 45°.
∵∠DCH = ∠DBC,
∴∠EBO = ∠HCO.
在△EBO和△HCO中,$\begin{cases}OB = OC,\\∠EBO = ∠HCO,\\BE = CH,\end{cases}$
∴△EBO≌△HCO(SAS),
∴$OE = OH$,∠EOB = ∠HOC.
∵$OC\bot AB$,
∴∠COE + ∠EOB = 90°,
∴∠COE + ∠HOC = 90°,即∠EOH = 90°,
∴△EOH是等腰直角三角形,由勾股定理,得$EH = \sqrt{OH^{2} + OE^{2}} = \sqrt{2}OH$,
∴$OH = \frac{\sqrt{2}}{2}EH = \frac{\sqrt{2}}{2} × \frac{6\sqrt{10}}{5} = \frac{6\sqrt{5}}{5}$.
查看更多完整答案,请扫码查看