2026年启东中学作业本九年级数学下册苏科版宿迁专版


注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2026年启东中学作业本九年级数学下册苏科版宿迁专版 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。



《2026年启东中学作业本九年级数学下册苏科版宿迁专版》

1. 如图,$AB = 8$,$BD \perp AB$,$AC \perp AB$,且$AC = 3$.$E$是线段$AB$上一动点,过点$E$作$CE$的垂线,交射线$BD$于点$F$,则$BF$的长的最大值是
$\frac{16}{3}$
.

答案: 1. $\frac{16}{3}$ 点拨:设$AE=x$,$\because AB=8$,$\therefore BE=8 - x$。
 $\because BD\perp AB$,$AC\perp AB$,$CE\perp EF$,
 $\therefore \angle CAE=\angle CEF=\angle EBF=90^{\circ}$,
 $\therefore \angle ACE+\angle AEC=90^{\circ}$,$\angle BEF+\angle AEC=90^{\circ}$,
 $\therefore \angle ACE=\angle BEF$,$\therefore \triangle ACE\sim \triangle BEF$,
 $\therefore \frac{AE}{AC}=\frac{BF}{BE}$,即$\frac{x}{3}=\frac{BF}{8 - x}$,
 $\therefore BF=-\frac{1}{3}x^{2}+\frac{8}{3}x=-\frac{1}{3}(x - 4)^{2}+\frac{16}{3}$,
 $\therefore$当$x = 4$时,$BF$的长取得最大值,最大值为$\frac{16}{3}$。
2. 如图,在长方形$ABCD$中,内接三个大小相同的正方形,点$E,F,G,H$分别在边$AB$,$BC,CD,AD$上,若$AB = 12\ cm$,$BC = 10\ cm$,则每个小正方形的边长为
$2\sqrt{5}$
$cm$.
答案: 2. $2\sqrt{5}$ 点拨:$\because$四边形$ABCD$是矩形,$\therefore \angle A=\angle B=\angle C=90^{\circ}$。$\because \angle HEF=\angle EFG=90^{\circ}$,$\therefore \angle AEH=\angle BFE=90^{\circ}-\angle BEF$,$\angle BFE=\angle CGF=90^{\circ}-\angle CFG$;
在$\triangle AEH$和$\triangle BFE$中,$\begin{cases} \angle A=\angle B,\\ \angle AEH=\angle BFE,\\ HE=EF,\\ \end{cases}$
$\therefore \triangle AEH\cong \triangle BFE(AAS)$,$\therefore AE=BF$。$\because \angle B=\angle C$,$\angle BFE=\angle CGF$,$EF = 2FG$,
$\therefore \triangle BFE\sim \triangle CGF$,$\therefore \frac{BE}{CF}=\frac{EF}{FG}=2$,
$\therefore BE = 2CF$。$\because AB = 12cm$,$BC = 10cm$,$\therefore AE=BF=10 - CF$,$\therefore 10 - CF+2CF = 12$,
解得$CF = 2$,$\therefore BE = 4cm$,$BF = 8cm$,$\therefore EF=\sqrt{BE^{2}+BF^{2}}=\sqrt{4^{2}+8^{2}}=4\sqrt{5}(cm)$,$\therefore FG=\frac{1}{2}EF=2\sqrt{5}cm$,$\therefore$每个小正方形的边长为$2\sqrt{5}cm$。
3. 如图,在$Rt \bigtriangleup ABC$中,$\angle ACB = 90^{\circ}$,过点$B$作$BD \perp AB$,交$\angle ACB$的平分线于点$D$,$AB$与$CD$相交于点$E$.若$BE = \sqrt{10}$,$BD = 2\sqrt{10}$,求$AC$的长.
答案:
3. 解:如答图,作$EF\perp CB$于点$F$,$DL\perp CB$交$CB$的延长线于点$L$,则$\angle CFE=\angle EFB=\angle L=90^{\circ}$。$\because \angle ACB=90^{\circ}$,$CD$平分$\angle ACB$,$\therefore \angle BCD=\frac{1}{2}\angle ACB=45^{\circ}$,$\therefore \angle FEC=\angle LDC=\angle LCD=45^{\circ}$,$\therefore EF=CF$,$DL=CL$。$\because BD\perp AB$,$BE=\sqrt{10}$,$BD=2\sqrt{10}$,
$\therefore \angle ABD=90^{\circ}$,$\therefore \angle FBE=\angle LDB=90^{\circ}-\angle LBD$,
$\therefore \triangle FBE\sim \triangle LDB$,
$\therefore \frac{EF}{BL}=\frac{BF}{DL}=\frac{BE}{BD}=\frac{\sqrt{10}}{2\sqrt{10}}=\frac{1}{2}$,$\therefore BL = 2EF$,$DL = 2BF$,设$EF=CF=m$,则$BL = 2m$。
$\because DL=CL=2BF=BF+m+2m$,$\therefore BF = 3m$,
$\therefore BC=m + 3m=4m$。
$\because BE=\sqrt{EF^{2}+BF^{2}}=\sqrt{m^{2}+(3m)^{2}}=\sqrt{10m^{2}}=\sqrt{10}$,$\therefore EF=m = 1$。
$\because \angle ACB=\angle EFB=90^{\circ}$,$\angle ABC=\angle EBF$,
$\therefore \triangle ABC\sim \triangle EBF$,
$\therefore \frac{AC}{EF}=\frac{BC}{BF}=\frac{4m}{3m}=\frac{4}{3}$,$\therefore AC=\frac{4}{3}EF=\frac{4}{3}×1=\frac{4}{3}$。
CF第3题答图

查看更多完整答案,请扫码查看

关闭