1. 已知点$A(m,y_{1})$,$B(m + 4,y_{2})$,$C(x_{0},y_{0})$在二次函数$y = ax^{2}+4ax + c(a\neq0)$的图像上,且$C$为抛物线的顶点. 若$y_{0}\geqslant y_{2}>y_{1}$,则$m$的取值范围是
$m < -4$
.
答案:
1.$m < -4$ 点拨:由题意,得抛物线的对称轴为直线$x = - \frac{4a}{2a} = - 2$.
$\because C$为抛物线的顶点,且$y_{0} \geq y_{2} > y_{1}$,$\therefore$抛物线开口向下.$\because y_{2} > y_{1}$,$A(m,y_{1})$,$B(m + 4,y_{2})$,$\therefore AB$的中点位于对称轴的左侧,$\therefore\frac{m + m + 4}{2} < - 2$,解得$m < - 4$.
$\because C$为抛物线的顶点,且$y_{0} \geq y_{2} > y_{1}$,$\therefore$抛物线开口向下.$\because y_{2} > y_{1}$,$A(m,y_{1})$,$B(m + 4,y_{2})$,$\therefore AB$的中点位于对称轴的左侧,$\therefore\frac{m + m + 4}{2} < - 2$,解得$m < - 4$.
2. 已知二次函数$y = x^{2}-2nx + 3(n>0)$,点$A(m - 2,a)$,$B(4,b)$,$C(m,a)$都在这个二次函数的图像上,且$a < b < 3$,则$m$的取值范围是
$3 < m < 4$或$m > 6$
.
答案:
2.$3 < m < 4$或$m > 6$ 点拨:$\because y = x^{2} - 2nx + 3 = (x - n)^{2} - n^{2} + 3$,$\therefore$二次函数$y = x^{2} - 2nx + 3$的对称轴为直线$x = n$.$\because$点$A(m - 2,a)$,$C(m,a)$在二次函数$y = x^{2} - 2nx + 3$的图像上,$\therefore\frac{m - 2 + m}{2} = m - 1 = n$.$\because n > 0$,$\therefore m - 1 > 0$,
解得$m > 1$.
$\because m - 2 < m$,$\therefore$点$A$在对称轴左侧,点$C$在对称轴右侧,在$y = x^{2} - 2nx + 3$中,令$x = 0$,得$y = 3$,
$\therefore$抛物线$y = x^{2} - 2nx + 3$与$y$轴的交点坐标为$(0,3)$,
$\therefore(0,3)$关于对称轴直线$x = m - 1$的对称点为$(2m - 2,3)$.
$\because b < 3$,$\therefore 4 < 2m - 2$,解得$m > 3$.
①当点$A(m - 2,a)$,$B(4,b)$都在对称轴左侧时.
$\because y$随$x$的增大而减小,且$a < b$,
$\therefore 4 < m - 2$,解得$m > 6$,此时$m$满足的条件为$m > 6$
②当点$A(m - 2,a)$在对称轴左侧,点$B(4,b)$在对称轴右侧时.$\because a < b$,
$\therefore$点$B(4,b)$到对称轴直线$x = m - 1$的距离大于点$A(m - 2,a)$到对称轴直线$x = m - 1$的距离,$\therefore 4 - (m - 1) > m - 1 - (m - 2)$,解得$m < 4$,此时$m$满足的条件是$3 < m < 4$.
综上所述,$m$的取值范围是$3 < m < 4$或$m > 6$.
解得$m > 1$.
$\because m - 2 < m$,$\therefore$点$A$在对称轴左侧,点$C$在对称轴右侧,在$y = x^{2} - 2nx + 3$中,令$x = 0$,得$y = 3$,
$\therefore$抛物线$y = x^{2} - 2nx + 3$与$y$轴的交点坐标为$(0,3)$,
$\therefore(0,3)$关于对称轴直线$x = m - 1$的对称点为$(2m - 2,3)$.
$\because b < 3$,$\therefore 4 < 2m - 2$,解得$m > 3$.
①当点$A(m - 2,a)$,$B(4,b)$都在对称轴左侧时.
$\because y$随$x$的增大而减小,且$a < b$,
$\therefore 4 < m - 2$,解得$m > 6$,此时$m$满足的条件为$m > 6$
②当点$A(m - 2,a)$在对称轴左侧,点$B(4,b)$在对称轴右侧时.$\because a < b$,
$\therefore$点$B(4,b)$到对称轴直线$x = m - 1$的距离大于点$A(m - 2,a)$到对称轴直线$x = m - 1$的距离,$\therefore 4 - (m - 1) > m - 1 - (m - 2)$,解得$m < 4$,此时$m$满足的条件是$3 < m < 4$.
综上所述,$m$的取值范围是$3 < m < 4$或$m > 6$.
3. 在平面直角坐标系$xOy$中,$M(x_{1},y_{1})$,$N(x_{2},y_{2})$是抛物线$y = a(x - t)^{2}+k(a>0)$上任意两点.
(1)若对于$x_{1}=0$,$t = 1$,有$y_{1}=y_{2}$,求$x_{2}$的值;
(2)若对于$0 < x_{1}<1$,$t + 1 < x_{2}<t + 2$,都不存在$y_{1}=y_{2}$,求$t$的取值范围.
(1)若对于$x_{1}=0$,$t = 1$,有$y_{1}=y_{2}$,求$x_{2}$的值;
(2)若对于$0 < x_{1}<1$,$t + 1 < x_{2}<t + 2$,都不存在$y_{1}=y_{2}$,求$t$的取值范围.
答案:
3.解:
(1)$\because t = 1$,$\therefore$抛物线$y = a(x - t)^{2} + k(a > 0)$的对称轴为直线$x = t = 1$.
$\because y_{1} = y_{2}$,$\therefore M(x_{1},y_{1})$,$N(x_{2},y_{2})$关于对称轴对称,
$\therefore\frac{x_{1} + x_{2}}{2} = 1$.
$\because x_{1} = 0$,$\therefore x_{2} = 2$.
(2)设$N(x_{2},y_{2})$关于直线$x = t$的对称点为$N^{\prime}(x_{2}^{\prime},y_{2})$.
$\therefore\frac{x_{2} + x_{2}^{\prime}}{2} = t$,$\therefore x_{2}^{\prime} = 2t - x_{2}$.
$\because t + 1 < x_{2} < t + 2$,$\therefore t - 2 < x_{2}^{\prime} = 2t - x_{2} < t - 1$.
$\because$不存在$y_{1} = y_{2}$,且$0 < x_{1} < 1$,$\therefore t - 2 \geq 1$或$t + 2 \leq 0$
或$\begin{cases}1 \leq t + 1, \\0 \geq t - 1. \end{cases}$
解得$t \geq 3$或$t \leq - 2$或$0 \leq t \leq 1$.
(1)$\because t = 1$,$\therefore$抛物线$y = a(x - t)^{2} + k(a > 0)$的对称轴为直线$x = t = 1$.
$\because y_{1} = y_{2}$,$\therefore M(x_{1},y_{1})$,$N(x_{2},y_{2})$关于对称轴对称,
$\therefore\frac{x_{1} + x_{2}}{2} = 1$.
$\because x_{1} = 0$,$\therefore x_{2} = 2$.
(2)设$N(x_{2},y_{2})$关于直线$x = t$的对称点为$N^{\prime}(x_{2}^{\prime},y_{2})$.
$\therefore\frac{x_{2} + x_{2}^{\prime}}{2} = t$,$\therefore x_{2}^{\prime} = 2t - x_{2}$.
$\because t + 1 < x_{2} < t + 2$,$\therefore t - 2 < x_{2}^{\prime} = 2t - x_{2} < t - 1$.
$\because$不存在$y_{1} = y_{2}$,且$0 < x_{1} < 1$,$\therefore t - 2 \geq 1$或$t + 2 \leq 0$
或$\begin{cases}1 \leq t + 1, \\0 \geq t - 1. \end{cases}$
解得$t \geq 3$或$t \leq - 2$或$0 \leq t \leq 1$.
查看更多完整答案,请扫码查看