1. 如图,在由边长为 1 的小正方形组成的网格中,点$A$,$B$,$C$,$D$为格点(小正方形的顶点),$AB$,$CD$相交于点$P$,则$PC$的长为

$\frac{2\sqrt{5}}{7}$
.
答案:
1. $\frac{2\sqrt{5}}{7}$ 点拨:由勾股定理,得$CD = \sqrt{1^{2} + 2^{2}} = \sqrt{5}$,如答图,由题意可知$E$是$CD$的中点, $\therefore EC = ED = \frac{1}{2}CD = \frac{\sqrt{5}}{2}$. 连接$BC,DF$,则$BC// DF$, $\therefore \angle BCE = \angle FDE$. 又$\because \angle BEC = \angle FED,CE = DE$,
∴△BEC≌△FED(ASA), $\therefore BE = EF = \frac{3}{2}$. $\because AC// BE,\therefore \triangle APC \backsim \triangle BPE$, $\therefore \frac{PC}{PE} = \frac{AC}{BE} = \frac{4}{3}$,即$\frac{PC}{\frac{\sqrt{5}}{2}} = \frac{4}{3}$,解得$PC = \frac{2\sqrt{5}}{7}$.
1. $\frac{2\sqrt{5}}{7}$ 点拨:由勾股定理,得$CD = \sqrt{1^{2} + 2^{2}} = \sqrt{5}$,如答图,由题意可知$E$是$CD$的中点, $\therefore EC = ED = \frac{1}{2}CD = \frac{\sqrt{5}}{2}$. 连接$BC,DF$,则$BC// DF$, $\therefore \angle BCE = \angle FDE$. 又$\because \angle BEC = \angle FED,CE = DE$,
∴△BEC≌△FED(ASA), $\therefore BE = EF = \frac{3}{2}$. $\because AC// BE,\therefore \triangle APC \backsim \triangle BPE$, $\therefore \frac{PC}{PE} = \frac{AC}{BE} = \frac{4}{3}$,即$\frac{PC}{\frac{\sqrt{5}}{2}} = \frac{4}{3}$,解得$PC = \frac{2\sqrt{5}}{7}$.
2. 如图,$P$是$\triangle ABC$内一点,过点$P$分别作直线平行于$\triangle ABC$的各边,所形成的三个小三角形(图中阴影部分)的面积分别是$1$,$9$和$49$,则$\triangle ABC$的面积是

121
.
答案:
2. 121 点拨:如答图,$\because DE// BC,FH// AC,GI// AB$, $\therefore \triangle DPF \backsim \triangle BHF,\triangle GHP \backsim \triangle BHF,\triangle PEI \backsim \triangle GCI$, $\triangle GHP \backsim \triangle GCI,\therefore \triangle DPF \backsim \triangle PEI \backsim \triangle GHP$. $\because \triangle DPF,\triangle PEI,\triangle GHP$的面积比为$1 : 9 : 49,\therefore$它们对应边的比为$1 : 3 : 7$.又$\because$四边形$BDPG$与四边形$CEPH$为平行四边形,$\therefore DP = BG,EP = CH$.设$DP$为$x$,则$PE = 3x,GH = 7x,\therefore BC = BG + GH + CH = DP + GH + PE = x + 7x + 3x = 11x,\therefore BC : DP = 11x : x = 11 : 1$,由相似三角形面积比等于相似比的平方,得$S_{\triangle ABC} : S_{\triangle FDP} = 121 : 1,\therefore \triangle ABC$的面积为121.
2. 121 点拨:如答图,$\because DE// BC,FH// AC,GI// AB$, $\therefore \triangle DPF \backsim \triangle BHF,\triangle GHP \backsim \triangle BHF,\triangle PEI \backsim \triangle GCI$, $\triangle GHP \backsim \triangle GCI,\therefore \triangle DPF \backsim \triangle PEI \backsim \triangle GHP$. $\because \triangle DPF,\triangle PEI,\triangle GHP$的面积比为$1 : 9 : 49,\therefore$它们对应边的比为$1 : 3 : 7$.又$\because$四边形$BDPG$与四边形$CEPH$为平行四边形,$\therefore DP = BG,EP = CH$.设$DP$为$x$,则$PE = 3x,GH = 7x,\therefore BC = BG + GH + CH = DP + GH + PE = x + 7x + 3x = 11x,\therefore BC : DP = 11x : x = 11 : 1$,由相似三角形面积比等于相似比的平方,得$S_{\triangle ABC} : S_{\triangle FDP} = 121 : 1,\therefore \triangle ABC$的面积为121.
3. 如图,点$A$,$B$在反比例函数$y = \frac{k}{x}$的图像上,射线$BA$交$y$轴于点$D$,且$AB = 2AD$,延长$BO$交反比例函数图像另一分支于点$C$,连接$AC$交$y$轴于点$E$,若$S_{\triangle BCE} = 6$,求$k$的值.

答案:
3. 解:设$B(x,y)$,则$C( - x, - y)$.$\because AB = 2AD,\therefore BD = 3AD$.如答图,过点$A$作$AF \perp y$轴于点$F$,过点$B$作$BM \perp y$轴于点$M$,过点$C$作$CN \perp y$轴于点$N$,则$AF// BM// CN$,$\therefore \triangle ADF \backsim \triangle BDM,\triangle AEF \backsim \triangle CEN$, $\therefore BM = 3AF$. 易知$\triangle BOM \cong \triangle CON$,$\therefore CN = BM = 3AF = x,OM = ON = y,\therefore EN = 3EF$.$\because$点$A,B$在反比例函数$y = \frac{k}{x}$的图像上,$\therefore A(\frac{1}{3}x,3y),\therefore OF = 3y,FN = 4y,\therefore EO = 2y$,
$\therefore S_{\triangle BCE} = \frac{1}{2}OE · (BM + CN) = \frac{1}{2} · 2y(x + x) = 6$, $\therefore 2xy = 6,\therefore k = xy = 3$.
3. 解:设$B(x,y)$,则$C( - x, - y)$.$\because AB = 2AD,\therefore BD = 3AD$.如答图,过点$A$作$AF \perp y$轴于点$F$,过点$B$作$BM \perp y$轴于点$M$,过点$C$作$CN \perp y$轴于点$N$,则$AF// BM// CN$,$\therefore \triangle ADF \backsim \triangle BDM,\triangle AEF \backsim \triangle CEN$, $\therefore BM = 3AF$. 易知$\triangle BOM \cong \triangle CON$,$\therefore CN = BM = 3AF = x,OM = ON = y,\therefore EN = 3EF$.$\because$点$A,B$在反比例函数$y = \frac{k}{x}$的图像上,$\therefore A(\frac{1}{3}x,3y),\therefore OF = 3y,FN = 4y,\therefore EO = 2y$,
$\therefore S_{\triangle BCE} = \frac{1}{2}OE · (BM + CN) = \frac{1}{2} · 2y(x + x) = 6$, $\therefore 2xy = 6,\therefore k = xy = 3$.
查看更多完整答案,请扫码查看