2026年启东中学作业本九年级数学下册苏科版宿迁专版


注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2026年启东中学作业本九年级数学下册苏科版宿迁专版 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。



《2026年启东中学作业本九年级数学下册苏科版宿迁专版》

1. (2024·无锡模拟)如图,二次函数$y = x^{2} - 4x + 3$的图像交$x$轴于点$A,B$(点$A$在点$B$的左侧),交$y$轴于点$C$,将线段$AC$绕着点$C$逆时针旋转$45^{\circ}$,其所在直线与二次函数图像交于点$E$,则点$E$的坐标为
($\frac{7}{2}$,$\frac{5}{4}$)
.
答案:
1.($\frac{7}{2}$,$\frac{5}{4}$) 点拨:令$y=0$,则$x^{2}-4x + 3 = 0$,
解得$x_1 = 1$,$x_2 = 3$,$\therefore A(1,0)$,$B(3,0)$,$\therefore OA = 1$,$OB = 3$.
令$x = 0$,则$y = 3$,$\therefore C(0,3)$,$\therefore OC = 3$.
过点$A$作$AC$的垂线,交$CE$于点$F$,过点$F$作$x$轴的垂线,交$x$轴于点$D$,如答图
      第1题答图
$\because \angle ACF = 45^{\circ}$,$\angle CAF = 90^{\circ}$,$\therefore AC = AF$.
$\because \angle FAD + \angle CAO = 90^{\circ}$,$\angle ACO + \angle CAO = 90^{\circ}$,
$\therefore \angle FAD = \angle ACO$,$\therefore \triangle FAD \cong \triangle ACO(AAS)$,
$\therefore FD = OA = 1$,$AD = OC = 3$,
$\therefore OD = OA + AD = 1 + 3 = 4$,$\therefore F(4,1)$.
设直线$CE$的函数表达式为$y = kx + b$,
把$C(0,3)$,$F(4,1)$代入,得$\begin{cases}b = 3\\4k + b = 1\end{cases}$,
解得$\begin{cases}k = -\frac{1}{2}\\b = 3\end{cases}$,
$\therefore$直线$CE$的函数表达式为$y = -\frac{1}{2}x + 3$,
联立$\begin{cases}y = -\frac{1}{2}x + 3\\y = x^{2} - 4x + 3\end{cases}$,解得$\begin{cases}x = 0\\y = 3\end{cases}$或$\begin{cases}x = \frac{7}{2}\\y = \frac{5}{4}\end{cases}$
$\therefore E(\frac{7}{2},\frac{5}{4})$.
2. 如图,在平面直角坐标系$xOy$中,抛物线$y = ax^{2} + bx - 6(a \neq 0)$与$x$轴交于点$A(-2,0),B(6,0)$,与$y$轴交于点$C$,顶点为$D$,连接$BC$.
(1)抛物线的函数表达式为
$y = \frac{1}{2}x^{2} - 2x - 6$

(2)连接$AC$并延长,交$BD$的延长线于点$E$,求$\angle CEB$的度数.
答案:
2.
(1)$y = \frac{1}{2}x^{2} - 2x - 6$
(2)解:设直线$AC$的函数表达式为$y = k_1x + b_1$,
$\because A(-2,0)$,$C(0,-6)$,$\therefore \begin{cases}-2k_1 + b_1 = 0\\b_1 = -6\end{cases}$,解得$\begin{cases}k_1 = -3\\b_1 = -6\end{cases}$,
$\therefore$直线$AC$的函数表达式为$y = -3x - 6$.
同理,由点$D(2,-8)$,$B(6,0)$,可得直线$BD$的函数表达式为$y = 2x - 12$,令$-3x - 6 = 2x - 12$,解得$x = \frac{6}{5}$,$\therefore$点$E$的坐标为$(\frac{6}{5},-\frac{48}{5})$,
由题意,$OA = 2$,$OB = OC = 6$,$AB = 8$,
$\therefore AC = \sqrt{OA^{2} + OC^{2}} = \sqrt{2^{2} + 6^{2}} = 2\sqrt{10}$.
如答图,过点$E$作$EF \perp x$轴于点$F$,
$\therefore AE = \sqrt{AF^{2} + EF^{2}} = \sqrt{(2 + \frac{6}{5})^{2} + (\frac{48}{5})^{2}} = \frac{16\sqrt{10}}{5}$,
$\because \frac{AC}{AB} = \frac{\sqrt{10}}{4}$,$\frac{AB}{AE} = \frac{8}{\frac{16\sqrt{10}}{5}} = \frac{\sqrt{10}}{4}$,$\therefore \frac{AC}{AB} = \frac{AB}{AE}$
$\because \angle BAC = \angle EAB$,
$\therefore \triangle ABC \backsim \triangle AEB$,$\therefore \angle ABC = \angle AEB$.
$\because OB = OC$,$\angle COB = 90^{\circ}$,$\therefore \angle ABC = 45^{\circ}$,
$\therefore \angle CEB = 45^{\circ}$.
     第2题答图
3. 如图,抛物线$y = ax^{2} - 2ax + 3$与$x$轴交于点$A(-1,0)$和点$B$,与$y$轴交于点$C$,连接$AC$,过$B,C$两点作直线.
(1)求$a$的值;
(2)抛物线上是否存在点$P$,使$\angle PBC + \angle ACO = 45^{\circ}$,若存在,请求出直线$BP$的函数表达式;若不存在,请说明理由.
答案:
3.解:
(1)$\because$抛物线$y = ax^{2} - 2ax + 3$与$x$轴交于点$A(-1,0)$,$\therefore a + 2a + 3 = 0$,$\therefore a = -1$.
(2)存在.由
(1)知,$y = -x^{2} + 2x + 3$,则易知$B(3,0)$,$C(0,3)$.当$\angle PBC$在$BC$的下方时,在$y$轴正半轴上取点$M(0,1)$,连接$BM$交抛物线于点$P$,如答图①.$\because A(-1,0)$,$B(3,0)$,$C(0,3)$,$M(0,1)$,$\therefore OB = OC = 3$,$OM = OA = 1$,$\angle BOM = \angle COA = 90^{\circ}$,$\therefore \triangle BOM \cong \triangle COA(SAS)$,
$\therefore \angle MBO = \angle ACO$.$\because \angle CBO = 45^{\circ}$,$\therefore \angle CBP + \angle MBO = 45^{\circ}$,$\therefore \angle CBP + \angle ACO = 45^{\circ}$.设直线$BM$的函数表达式为$y = k^{\prime}x + b^{\prime}$,则$\begin{cases}3k^{\prime} + b^{\prime} = 0\\b^{\prime} = 1\end{cases}$,解得$\begin{cases}k^{\prime} = -\frac{1}{3}\\b^{\prime} = 1\end{cases}$,
$\therefore$直线$BM$的函数表达式为$y = -\frac{1}{3}x + 1$,
联立$\begin{cases}y = -\frac{1}{3}x + 1\\y = -x^{2} + 2x + 3\end{cases}$,
解得$\begin{cases}x_1 = 3\\y_1 = 0\end{cases}$(舍去),$\begin{cases}x_2 = -\frac{2}{3}\\y_2 = \frac{11}{9}\end{cases}$,$\therefore P(-\frac{2}{3},\frac{11}{9})$.
当$\angle PBC$在$BC$的上方时,作点$M$关于直线$BC$的对称点$M^{\prime}$,如答图②,连接$MM^{\prime}$,$CM^{\prime}$,直线$BM^{\prime}$交抛物线于点$P$.
 第3题答图
由对称,得$MM^{\prime} \perp BC$,$CM = CM^{\prime} = 2$,$\angle BCM^{\prime} = \angle BCM = 45^{\circ}$,$\therefore \angle MCM^{\prime} = 90^{\circ}$,$\therefore M^{\prime}(2,3)$,则直线$BM^{\prime}$的函数表达式为$y = -3x + 9$,联立$\begin{cases}y = -3x + 9\\y = -x^{2} + 2x + 3\end{cases}$,
解得$\begin{cases}x_1 = 3\\y_1 = 0\end{cases}$(舍去),$\begin{cases}x_2 = 2\\y_2 = 3\end{cases}$,$\therefore P(2,3)$.
综上所述,抛物线上存在点$P$,使$\angle PBC + \angle ACO = 45^{\circ}$,直线$BP$的函数表达式为$y = -\frac{1}{3}x + 1$或$y = -3x + 9$.

查看更多完整答案,请扫码查看

关闭