第16页
- 第1页
- 第2页
- 第3页
- 第4页
- 第5页
- 第6页
- 第7页
- 第8页
- 第9页
- 第10页
- 第11页
- 第12页
- 第13页
- 第14页
- 第15页
- 第16页
- 第17页
- 第18页
- 第19页
- 第20页
- 第21页
- 第22页
- 第23页
- 第24页
- 第25页
- 第26页
- 第27页
- 第28页
- 第29页
- 第30页
- 第31页
- 第32页
- 第33页
- 第34页
- 第35页
- 第36页
- 第37页
- 第38页
- 第39页
- 第40页
- 第41页
- 第42页
- 第43页
- 第44页
- 第45页
- 第46页
- 第47页
- 第48页
- 第49页
- 第50页
- 第51页
- 第52页
- 第53页
- 第54页
- 第55页
- 第56页
- 第57页
- 第58页
- 第59页
- 第60页
- 第61页
- 第62页
- 第63页
- 第64页
- 第65页
- 第66页
- 第67页
- 第68页
- 第69页
- 第70页
- 第71页
- 第72页
- 第73页
- 第74页
【例 1】一个平行四边形面积是 32 平方厘米,底是 8 厘米,高是多少厘米?
【分析】本题已知平行四边形的面积和底,求平行四边形的高,根据平行四边形面积公式:平行四边形面积=底×高,所以高=平行四边形面积÷底。
【分析】本题已知平行四边形的面积和底,求平行四边形的高,根据平行四边形面积公式:平行四边形面积=底×高,所以高=平行四边形面积÷底。
答案:
本题可根据平行四边形面积公式的变形来求解高。
已知平行四边形面积公式为$S = a× h$($S$表示平行四边形面积,$a$表示底,$h$表示高),那么$h = S÷ a$。
由题意可知$S = 32$平方厘米,$a = 8$厘米,将其代入$h = S÷ a$可得:
$h=32÷8 = 4$(厘米)
答:高是4厘米。
已知平行四边形面积公式为$S = a× h$($S$表示平行四边形面积,$a$表示底,$h$表示高),那么$h = S÷ a$。
由题意可知$S = 32$平方厘米,$a = 8$厘米,将其代入$h = S÷ a$可得:
$h=32÷8 = 4$(厘米)
答:高是4厘米。
【反馈练习 1】一块平行四边形小麦田面积是 8000 平方米,底是 160 米,高是多少米?
答案:
【反馈练习1】 8000÷160=50(米)
【例 2】一块三角形花坛,底是 75 分米,高是 40 分米。每平方米栽 5 棵花,一共能栽多少棵花?
【分析】根据三角形面积计算公式计算出三角形花坛的面积,因为所给长度单位是分米,得到的结果要换算成平方米为单位,再乘每平方米所栽的棵数,得到一共栽的棵数。
【分析】根据三角形面积计算公式计算出三角形花坛的面积,因为所给长度单位是分米,得到的结果要换算成平方米为单位,再乘每平方米所栽的棵数,得到一共栽的棵数。
答案:
75×40÷2=1500(平方分米)
1500平方分米=15平方米
15×5=75(棵)
答:一共能栽75棵花。
1500平方分米=15平方米
15×5=75(棵)
答:一共能栽75棵花。
【反馈练习 2】
一块三角形地的底是 10 米,高是 6 米,如果一共收蔬菜 150 千克,那么平均每平方米收蔬菜多少千克?
一块三角形地的底是 10 米,高是 6 米,如果一共收蔬菜 150 千克,那么平均每平方米收蔬菜多少千克?
答案:
【反馈练习2】 10×6÷2=30(平方米)
150÷30=5(千克)
150÷30=5(千克)
【例 3】一堆钢管堆成一个梯形形状,最上层有 5 根,最下层有 12 根,并且每相邻两层相差 1 根,这堆钢管一共有多少根?
【分析】计算钢管的根数可以应用梯形面积公式,最上层的根数表示上底,最下层的根数表示下底,层数表示梯形的高。由“每相邻两层相差 1 根”可知,从 5 至 12 共有 8 层,即梯形的高是 8。
【分析】计算钢管的根数可以应用梯形面积公式,最上层的根数表示上底,最下层的根数表示下底,层数表示梯形的高。由“每相邻两层相差 1 根”可知,从 5 至 12 共有 8 层,即梯形的高是 8。
答案:
答题卡:
解:根据题意,层数为:$12 - 5 + 1 = 8$(层)。
应用梯形面积公式计算钢管总数:
$(5 + 12) × 8 ÷ 2$
$= 17 × 8 ÷ 2$
$= 136 ÷ 2$
$= 68$(根)
答:这堆钢管一共有 68 根。
解:根据题意,层数为:$12 - 5 + 1 = 8$(层)。
应用梯形面积公式计算钢管总数:
$(5 + 12) × 8 ÷ 2$
$= 17 × 8 ÷ 2$
$= 136 ÷ 2$
$= 68$(根)
答:这堆钢管一共有 68 根。
【反馈练习 3】一堆木材,堆成梯形形状,最上层 13 根,最下层 21 根,每相邻两层相差 1 根,这堆木材一共有多少根?
答案:
【反馈练习3】 (13+21)×9÷2=153(根)
【例 4】下图是一个草坪,草坪中间有一个三角形假山。草坪的实际面积是多少平方米?(单位:米)

【分析】这是有关组合图形的面积计算,草坪是一个梯形,中间有一个三角形,草坪的实际面积要从梯形面积中减去三角形的面积。
【分析】这是有关组合图形的面积计算,草坪是一个梯形,中间有一个三角形,草坪的实际面积要从梯形面积中减去三角形的面积。
答案:
答题:
梯形面积:
$S = \frac{(a+b) × h}{2} = \frac{(28+40) × 24}{2} = 816 平方米$
三角形面积:
$S = \frac{a × h}{2} = \frac{6 × 4}{2} = 12 平方米$
草坪实际面积:
$816 - 12 = 804 平方米$
答: 草坪实际面积是 804 平方米。
梯形面积:
$S = \frac{(a+b) × h}{2} = \frac{(28+40) × 24}{2} = 816 平方米$
三角形面积:
$S = \frac{a × h}{2} = \frac{6 × 4}{2} = 12 平方米$
草坪实际面积:
$816 - 12 = 804 平方米$
答: 草坪实际面积是 804 平方米。
查看更多完整答案,请扫码查看