1. 一元二次方程$x^2 + 2x - 1 = 0$的根是(
A.$-2\pm\sqrt{2}$
B.$-1\pm2\sqrt{2}$
C.$-1\pm\sqrt{2}$
D.$1\pm\sqrt{2}$
C
).A.$-2\pm\sqrt{2}$
B.$-1\pm2\sqrt{2}$
C.$-1\pm\sqrt{2}$
D.$1\pm\sqrt{2}$
答案:
C
2. 要使一元二次方程$y^2 - 4y + k = 0$有两个相等的实数根,则$k=$
4
.
答案:
4
3. 用公式法解下列方程:
(1)$x^2 + 5x - 14 = 0$.
(2)$8 - 2x^2 = -5x$.
(3)$m^2 + 1 = 2\sqrt{3}m$.
(4)$4x(x + 4) = x - 14$.
(1)$x^2 + 5x - 14 = 0$.
(2)$8 - 2x^2 = -5x$.
(3)$m^2 + 1 = 2\sqrt{3}m$.
(4)$4x(x + 4) = x - 14$.
答案:
(1)$x_{1}=-7$,$x_{2}=2$ (2)$x_{1}=\frac{5+\sqrt{89}}{4}$,$x_{2}=\frac{5-\sqrt{89}}{4}$ (3)$m_{1}=\sqrt{3}+\sqrt{2}$,$m_{2}=\sqrt{3}-\sqrt{2}$ (4)$x_{1}=-2$,$x_{2}=-\frac{7}{4}$
4. 请分别用公式法和配方法解方程:$3x^2 + 4x + 1 = 0$.
答案:
$x_{1}=-1$,$x_{2}=-\frac{1}{3}$
5. 关于$x的一元二次方程x^2 + (2k + 1)x + k^2 - 1 = 0$有两个不相等的实数根.
(1)求$k$的取值范围.
(2)写出一个满足条件的$k$的值,并求出此时方程的根.
(1)求$k$的取值范围.
(2)写出一个满足条件的$k$的值,并求出此时方程的根.
答案:
(1)$k>-\frac{5}{4}$ (2)略
查看更多完整答案,请扫码查看