用直接开平方法解一元二次方程:
1. $x^{2}-9= 0$; 2. $2x^{2}-3= 9$;
3. $4x^{2}-13= 12$; 4. $x^{2}-5= \frac{4}{9}$;
5. $(x - 1)^{2}= 3$; 6. $(2x - 3)^{2}= 25$;
7. $(2x - 1)^{2}-121= 0$; 8. $3(x + 1)^{2}= 27$;
9. $2(3x - 2)^{2}-18= 0$; 10. $(2x - 1)^{2}= (3 - x)^{2}$。
1. $x^{2}-9= 0$; 2. $2x^{2}-3= 9$;
3. $4x^{2}-13= 12$; 4. $x^{2}-5= \frac{4}{9}$;
5. $(x - 1)^{2}= 3$; 6. $(2x - 3)^{2}= 25$;
7. $(2x - 1)^{2}-121= 0$; 8. $3(x + 1)^{2}= 27$;
9. $2(3x - 2)^{2}-18= 0$; 10. $(2x - 1)^{2}= (3 - x)^{2}$。
答案:
1.x=±3
2.$x_{1}=\sqrt{6},x_{2}=-\sqrt{6}$
3.$x_{1}=\frac{5}{2},x_{2}=-\frac{5}{2}$
4.$x_{1}=\frac{7}{3},x_{2}=-\frac{7}{3}$
5.$x_{1}=1+\sqrt{3},x_{2}=1-\sqrt{3}$
6.$x_{1}=4,x_{2}=-1$
7.$x_{1}=6,x_{2}=-5$
8.$x_{1}=-4,x_{2}=2$
9.$x_{1}=\frac{5}{3},x_{2}=-\frac{1}{3}$
10.$x_{1}=\frac{4}{3},x_{2}=-2$
2.$x_{1}=\sqrt{6},x_{2}=-\sqrt{6}$
3.$x_{1}=\frac{5}{2},x_{2}=-\frac{5}{2}$
4.$x_{1}=\frac{7}{3},x_{2}=-\frac{7}{3}$
5.$x_{1}=1+\sqrt{3},x_{2}=1-\sqrt{3}$
6.$x_{1}=4,x_{2}=-1$
7.$x_{1}=6,x_{2}=-5$
8.$x_{1}=-4,x_{2}=2$
9.$x_{1}=\frac{5}{3},x_{2}=-\frac{1}{3}$
10.$x_{1}=\frac{4}{3},x_{2}=-2$
查看更多完整答案,请扫码查看