用配方法解一元二次方程:
1. $x^{2}-2x= 1$;
2. $x^{2}+4x= 3$;
3. $x^{2}+2\sqrt{5}x= 4$;
4. $x^{2}-6x+8= 0$;
5. $x^{2}-8x-1= 0$;
6. $x^{2}-6x-4= 0$;
7. $x^{2}+2x-4= 0$;
8. $3x^{2}-6x+2= 0$;
9. $2x^{2}+10x-9= 0$;
10. $2x^{2}-7x+6= 0$.
1. $x^{2}-2x= 1$;
2. $x^{2}+4x= 3$;
3. $x^{2}+2\sqrt{5}x= 4$;
4. $x^{2}-6x+8= 0$;
5. $x^{2}-8x-1= 0$;
6. $x^{2}-6x-4= 0$;
7. $x^{2}+2x-4= 0$;
8. $3x^{2}-6x+2= 0$;
9. $2x^{2}+10x-9= 0$;
10. $2x^{2}-7x+6= 0$.
答案:
1. $ x_{1}=-\sqrt{2}+1,x_{2}=\sqrt{2}+1 $
2. $ x_{1}=-2+\sqrt{7},x_{2}=-2-\sqrt{7} $
3. $ x_{1}=-\sqrt{5}+3,x_{2}=-\sqrt{5}-3 $
4. $ x_{1}=4,x_{2}=2 $
5. $ x_{1}=4+\sqrt{17},x_{2}=4-\sqrt{17} $
6. $ x_{1}=3+\sqrt{13},x_{2}=3-\sqrt{13} $
7. $ x_{1}=-1+\sqrt{5},x_{2}=-1-\sqrt{5} $
8. $ x_{1}=1+\frac{\sqrt{3}}{3},x_{2}=1-\frac{\sqrt{3}}{3} $
9. $ x_{1}=\frac{-5+\sqrt{43}}{2},x_{2}=\frac{-5-\sqrt{43}}{2} $
10. $ x_{1}=2,x_{2}=\frac{3}{2} $
2. $ x_{1}=-2+\sqrt{7},x_{2}=-2-\sqrt{7} $
3. $ x_{1}=-\sqrt{5}+3,x_{2}=-\sqrt{5}-3 $
4. $ x_{1}=4,x_{2}=2 $
5. $ x_{1}=4+\sqrt{17},x_{2}=4-\sqrt{17} $
6. $ x_{1}=3+\sqrt{13},x_{2}=3-\sqrt{13} $
7. $ x_{1}=-1+\sqrt{5},x_{2}=-1-\sqrt{5} $
8. $ x_{1}=1+\frac{\sqrt{3}}{3},x_{2}=1-\frac{\sqrt{3}}{3} $
9. $ x_{1}=\frac{-5+\sqrt{43}}{2},x_{2}=\frac{-5-\sqrt{43}}{2} $
10. $ x_{1}=2,x_{2}=\frac{3}{2} $
查看更多完整答案,请扫码查看