用因式分解法解一元二次方程:
1. $y^{2}-7y+6= 0$;
2. $x^{2}+10x+16= 0$;
3. $x^{2}-2x-3= 0$;
4. $x^{2}= 4x$;
5. $x^{2}+8x-9= 0$;
6. $2x^{2}-4x= 0$;
7. $2x(x-1)= 3(x-1)$;
8. $x(x+1)= 2x+2$;
9. $(x-3)^{2}= 2(x-3)$;
10. $(x-2)^{2}= (2x+3)^{2}$.
1. $y^{2}-7y+6= 0$;
2. $x^{2}+10x+16= 0$;
3. $x^{2}-2x-3= 0$;
4. $x^{2}= 4x$;
5. $x^{2}+8x-9= 0$;
6. $2x^{2}-4x= 0$;
7. $2x(x-1)= 3(x-1)$;
8. $x(x+1)= 2x+2$;
9. $(x-3)^{2}= 2(x-3)$;
10. $(x-2)^{2}= (2x+3)^{2}$.
答案:
1.$y_{1}=1,y_{2}=6$
2.$x_{1}=-2,x_{2}=-8$
3.$x_{1}=-1,x_{2}=3$
4.$x_{1}=0,x_{2}=4$
5.$x_{1}=-9,x_{2}=1$
6.$x_{1}=0,x_{2}=2$
7.$x_{1}=1,x_{2}=\frac{3}{2}$
8.$x_{1}=-1,x_{2}=2$
9.$x_{1}=3,x_{2}=5$
10.$x_{1}=-5,x_{2}=-\frac{1}{3}$
2.$x_{1}=-2,x_{2}=-8$
3.$x_{1}=-1,x_{2}=3$
4.$x_{1}=0,x_{2}=4$
5.$x_{1}=-9,x_{2}=1$
6.$x_{1}=0,x_{2}=2$
7.$x_{1}=1,x_{2}=\frac{3}{2}$
8.$x_{1}=-1,x_{2}=2$
9.$x_{1}=3,x_{2}=5$
10.$x_{1}=-5,x_{2}=-\frac{1}{3}$
查看更多完整答案,请扫码查看