1. 用配方法证明$-9x^{2}+8x - 2$的值小于0.
答案:
证明:$-9x^{2}+8x-2=-9\left(x^{2}-\frac{8}{9}x\right)-2=-9\left(x^{2}-\frac{8}{9}x+\frac{16}{81}-\frac{16}{81}\right)-2=-9\left(x-\frac{4}{9}\right)^{2}-\frac{2}{9}$.
$\because 9\left(x-\frac{4}{9}\right)^{2}\geqslant 0$,$\therefore -9\left(x-\frac{4}{9}\right)^{2}\leqslant 0$,
$\therefore -9\left(x-\frac{4}{9}\right)^{2}-\frac{2}{9}<0$,
即$-9x^{2}+8x-2$的值小于0.
$\because 9\left(x-\frac{4}{9}\right)^{2}\geqslant 0$,$\therefore -9\left(x-\frac{4}{9}\right)^{2}\leqslant 0$,
$\therefore -9\left(x-\frac{4}{9}\right)^{2}-\frac{2}{9}<0$,
即$-9x^{2}+8x-2$的值小于0.
2. 用配方法证明$2x^{2}-4x + 5$的最小值为3.
答案:
证明:$2x^{2}-4x+5=2\left(x^{2}-2x\right)+5$
$=2\left(x^{2}-2x+1-1\right)+5$
$=2\left(x-1\right)^{2}-2+5=2\left(x-1\right)^{2}+3$.
$\because \left(x-1\right)^{2}\geqslant 0$,$\therefore 2\left(x-1\right)^{2}+3\geqslant 3$,
即$2x^{2}-4x+5$的最小值为3.
$=2\left(x^{2}-2x+1-1\right)+5$
$=2\left(x-1\right)^{2}-2+5=2\left(x-1\right)^{2}+3$.
$\because \left(x-1\right)^{2}\geqslant 0$,$\therefore 2\left(x-1\right)^{2}+3\geqslant 3$,
即$2x^{2}-4x+5$的最小值为3.
3. 用配方法证明$-2x^{2}+6x - 5的最大值为-\frac{1}{2}$.
答案:
证明:$-2x^{2}+6x-5=-2\left(x^{2}-3x\right)-5$
$=-2\left(x^{2}-3x+\frac{9}{4}-\frac{9}{4}\right)-5$
$=-2\left(x-\frac{3}{2}\right)^{2}+\frac{9}{2}-5$
$=-2\left(x-\frac{3}{2}\right)^{2}-\frac{1}{2}$.
$\because -2\left(x-\frac{3}{2}\right)^{2}\leqslant 0$,$\therefore -2\left(x-\frac{3}{2}\right)^{2}-\frac{1}{2}\leqslant -\frac{1}{2}$,
即$-2x^{2}+6x-5$的最大值为$-\frac{1}{2}$.
$=-2\left(x^{2}-3x+\frac{9}{4}-\frac{9}{4}\right)-5$
$=-2\left(x-\frac{3}{2}\right)^{2}+\frac{9}{2}-5$
$=-2\left(x-\frac{3}{2}\right)^{2}-\frac{1}{2}$.
$\because -2\left(x-\frac{3}{2}\right)^{2}\leqslant 0$,$\therefore -2\left(x-\frac{3}{2}\right)^{2}-\frac{1}{2}\leqslant -\frac{1}{2}$,
即$-2x^{2}+6x-5$的最大值为$-\frac{1}{2}$.
4. 用配方法证明$2x^{2}-x + 3的最小值为\frac{23}{8}$.
答案:
证明:$2x^{2}-x+3=2\left(x^{2}-\frac{1}{2}x+\frac{1}{16}-\frac{1}{16}\right)+3$
$=2\left(x-\frac{1}{4}\right)^{2}+\frac{23}{8}$.
$\because 2\left(x-\frac{1}{4}\right)^{2}\geqslant 0$,$\therefore 2\left(x-\frac{1}{4}\right)^{2}+\frac{23}{8}\geqslant \frac{23}{8}$,
即$2x^{2}-x+3$的最小值为$\frac{23}{8}$.
$=2\left(x-\frac{1}{4}\right)^{2}+\frac{23}{8}$.
$\because 2\left(x-\frac{1}{4}\right)^{2}\geqslant 0$,$\therefore 2\left(x-\frac{1}{4}\right)^{2}+\frac{23}{8}\geqslant \frac{23}{8}$,
即$2x^{2}-x+3$的最小值为$\frac{23}{8}$.
5. 用配方法证明$x^{2}-4x + 5$的值不小于1.
答案:
证明:$x^{2}-4x+5=x^{2}-4x+4+1=(x-2)^{2}+1$,
$\because (x-2)^{2}\geqslant 0$,$\therefore (x-2)^{2}+1\geqslant 1$,
即$x^{2}-4x+5$的值不小于1.
$\because (x-2)^{2}\geqslant 0$,$\therefore (x-2)^{2}+1\geqslant 1$,
即$x^{2}-4x+5$的值不小于1.
查看更多完整答案,请扫码查看