第53页
- 第1页
- 第2页
- 第3页
- 第4页
- 第5页
- 第6页
- 第7页
- 第8页
- 第9页
- 第10页
- 第11页
- 第12页
- 第13页
- 第14页
- 第15页
- 第16页
- 第17页
- 第18页
- 第19页
- 第20页
- 第21页
- 第22页
- 第23页
- 第24页
- 第25页
- 第26页
- 第27页
- 第28页
- 第29页
- 第30页
- 第31页
- 第32页
- 第33页
- 第34页
- 第35页
- 第36页
- 第37页
- 第38页
- 第39页
- 第40页
- 第41页
- 第42页
- 第43页
- 第44页
- 第45页
- 第46页
- 第47页
- 第48页
- 第49页
- 第50页
- 第51页
- 第52页
- 第53页
- 第54页
- 第55页
- 第56页
- 第57页
- 第58页
- 第59页
- 第60页
- 第61页
- 第62页
- 第63页
- 第64页
- 第65页
- 第66页
- 第67页
- 第68页
1.


30 3 30 50 3 2
答案:
30 3 30 50 3 2
2. 根据试商情况,直接写出准确商。

准确商:(
准确商:(
6
) 准确商:(3
)
答案:
6 3
3. 列竖式计算。
$72÷24= $ $358÷71= $
$100÷23= $ $408÷82= $
$72÷24= $ $358÷71= $
$100÷23= $ $408÷82= $
答案:
4. 小林用 207 个易拉罐进行 DIY 制作,制作笔筒用去了 15 个易拉罐,剩下的用来制作收纳箱,每 32 个易拉罐可以制作 1 个收纳箱,一共可以制作多少个收纳箱?
答案:
(207 - 15)÷32=6(个)
5. 四年级的王老师要为班级图书角新购入一批儿童读物,每本 53 元。王老师的购书卡里原来有 36 元,如果再充值 400 元,最多能购买儿童读物多少本?

答案:
400+30+36=466(元)
466÷53=8(本)……42(元)
466÷53=8(本)……42(元)
6. 在下面的$□$里填上合适的数,使商是一位数且没有余数。
$\begin{array}{r} \Box \\ 63\enclose{longdiv} {\Box \Box 4}\end{array}$ $\begin{array}{r} \Box \\ 91\enclose{longdiv} {3\Box \Box }\end{array}$
$\begin{array}{r} \Box \\ 63\enclose{longdiv} {\Box \Box 4}\end{array}$ $\begin{array}{r} \Box \\ 91\enclose{longdiv} {3\Box \Box }\end{array}$
$\begin{array}{r} \boxed{8} \\ 63\enclose{longdiv} {\boxed{5}\boxed{0}4}\end{array}$ $\begin{array}{r} \boxed{4} \\ 91\enclose{longdiv} {3\boxed{6}\boxed{4}}\end{array}$
答案:
8 4
63$\sqrt{504}$ 91$\sqrt{364}$
[解析]要使□□4÷63的商是一位数且没有余数,则63乘一个一位数等于□□4,结果的末位是4,想3和几相乘的积的末位是4,3×8=24,此时商只能是8,再根据“被除数 = 除数×商”求出被除数即可。要使3□□÷91的商是一位数且没有余数,则91乘一个一位数等于3□□,想9乘几的积是三十多,9×4=36,当商为4时,91×4=364,符合条件。
63$\sqrt{504}$ 91$\sqrt{364}$
[解析]要使□□4÷63的商是一位数且没有余数,则63乘一个一位数等于□□4,结果的末位是4,想3和几相乘的积的末位是4,3×8=24,此时商只能是8,再根据“被除数 = 除数×商”求出被除数即可。要使3□□÷91的商是一位数且没有余数,则91乘一个一位数等于3□□,想9乘几的积是三十多,9×4=36,当商为4时,91×4=364,符合条件。
查看更多完整答案,请扫码查看