18.亮点原创将1个2,2个1,3个$\frac{2}{3}$,…,n个$\frac{2}{n}$(n为正整数)顺次排成一列:2,1,1,$\frac{2}{3}$,$\frac{2}{3}$,$\frac{2}{3}$,…,$\frac{2}{n}$,$\frac{2}{n}$,…,记a_1= 2,a_2= 1,a_3= 1,…,S_1= a_1,S_2= a_1 + a_2,S_3= a_1 + a_2 + a_3,…,Sₙ= a_1 + a_2 + … + aₙ,则S_2₀_2_5= ______
$126\frac{9}{32}$
.
答案:
$126\frac{9}{32}$ 解析:因为$1+2+3+\cdots+n=\frac{n(n+1)}{2}$,$2025=\frac{63×64}{2}+9$,所以前2025个数里面包含:1个2,2个1,3个$\frac{2}{3}$,…,63个$\frac{2}{63}$,9个$\frac{2}{64}$,所以$S_{2025}=1×2+2×1+3×\frac{2}{3}+\cdots+63×\frac{2}{63}+9×\frac{2}{64}=2×63+\frac{9}{32}=126\frac{9}{32}$.
19.(6分)新素养运算能力计算:
(1)27 - 18 + (-7) - 32;
$(2)-1^4 + (-3)×[(-4)^2 + 2] - (-2)^3÷4.$
(1)27 - 18 + (-7) - 32;
$(2)-1^4 + (-3)×[(-4)^2 + 2] - (-2)^3÷4.$
答案:
(1)原式=27 - 18 + (-7) - 32 = -30;(2)原式$=-1^4 + (-3)×[(-4)^2 + 2] - (-2)^3÷4 = -1 + (-3)×(16 + 2) - (-8)÷4 = -1 + (-3)×18 - (-2) = -1 + (-54) + 2 = -53.$
20.(3分)把下列各数分别填入相应的集合中:-4,-|-$\frac{4}{3}$|,0,$\frac{22}{7}$,-3.$\dot{1}\dot{4}$,2025,-(+5).
(1)整数集合:…{
(2)分数集合:…{
(3)有理数集合:…{
(1)整数集合:…{
-4, 0, 2025, -(+5)
};(2)分数集合:…{
$-|-\frac{4}{3}|, \frac{22}{7}, -3.\dot{1}\dot{4}$
};(3)有理数集合:…{
$-4, -|-\frac{4}{3}|, 0, \frac{22}{7}, -3.\dot{1}\dot{4}, 2025, -(+5)$
}.
答案:
(1)整数集合:{-4, 0, 2025, -(+5), …};(2)分数集合:{$-|-\frac{4}{3}|, \frac{22}{7}, -3.\dot{1}\dot{4}, \cdots$};(3)有理数集合:{$-4, -|-\frac{4}{3}|, 0, \frac{22}{7}, -3.\dot{1}\dot{4}, 2025, -(+5), \cdots$}.
21.(4分)小军在计算(-42$\frac{6}{7}$)÷6时,使用运算律解题过程如下:
解:(-42$\frac{6}{7}$)÷6= (-42 + $\frac{6}{7}$)×$\frac{1}{6}$= - 42×$\frac{1}{6}$ + $\frac{6}{7}$×$\frac{1}{6}$= - 7 + $\frac{1}{7}$= - 6$\frac{6}{7}$.
他的解题过程是否正确?如果不正确,请你帮他改正.
解:(-42$\frac{6}{7}$)÷6= (-42 + $\frac{6}{7}$)×$\frac{1}{6}$= - 42×$\frac{1}{6}$ + $\frac{6}{7}$×$\frac{1}{6}$= - 7 + $\frac{1}{7}$= - 6$\frac{6}{7}$.
他的解题过程是否正确?如果不正确,请你帮他改正.
答案:
不正确. 改正如下:$(-42\frac{6}{7})÷6 = (-42 - \frac{6}{7})×\frac{1}{6} = -42×\frac{1}{6} - \frac{6}{7}×\frac{1}{6} = -7 - \frac{1}{7} = -7\frac{1}{7}$.
查看更多完整答案,请扫码查看