用配方法解一元二次方程:
1. $ 2x^{2}-6x+3= 0 $. 2. $ 3x^{2}-6x-8= 0 $.
3. $ 4x^{2}-8x= 1 $. 4. $ \frac{1}{3}x^{2}-4x+\frac{4}{3}= 0 $.
5. $ 2x^{2}+6x-1= 0 $. 6. $ 2x^{2}-6x-3= 0 $.
7. $ 2x^{2}-4x-7= 0 $. 8. $ 3x^{2}+1= 2\sqrt{3}x $.
1. $ 2x^{2}-6x+3= 0 $. 2. $ 3x^{2}-6x-8= 0 $.
3. $ 4x^{2}-8x= 1 $. 4. $ \frac{1}{3}x^{2}-4x+\frac{4}{3}= 0 $.
5. $ 2x^{2}+6x-1= 0 $. 6. $ 2x^{2}-6x-3= 0 $.
7. $ 2x^{2}-4x-7= 0 $. 8. $ 3x^{2}+1= 2\sqrt{3}x $.
答案:
1. $x_{1}=\frac{3+\sqrt{3}}{2},x_{2}=\frac{3-\sqrt{3}}{2}$. 2. $x_{1}=1+\frac{\sqrt{33}}{3},x_{2}=1-\frac{\sqrt{33}}{3}$. 3. $x_{1}=1+\frac{\sqrt{5}}{2},x_{2}=1-\frac{\sqrt{5}}{2}$. 4. $x_{1}=6+4\sqrt{2},x_{2}=6-4\sqrt{2}$. 5. $x_{1}=-\frac{3}{2}+\frac{\sqrt{11}}{2},x_{2}=-\frac{3}{2}-\frac{\sqrt{11}}{2}$. 6. $x_{1}=\frac{3+\sqrt{15}}{2},x_{2}=\frac{3-\sqrt{15}}{2}$. 7. $x_{1}=\frac{2+3\sqrt{2}}{2},x_{2}=\frac{2-3\sqrt{2}}{2}$. 8. $x_{1}=x_{2}=\frac{\sqrt{3}}{3}$.
查看更多完整答案,请扫码查看